sglang_v0.5.2/flashinfer_0.3.1/include/flashinfer/trtllm/fused_moe/RoutingKernel.h

289 lines
9.0 KiB
C++

/*
* Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "IntFastDiv.h"
#include "flashinfer/trtllm/batched_gemm/trtllmGen_bmm_export/trtllm/gen/DtypeDecl.h"
#include "flashinfer/trtllm/common/cudaUtils.h"
namespace moe::dev {
namespace routing {
namespace tg = batchedGemm::trtllm::gen;
template <typename DataType>
struct PackedScoreIdx {
DataType score;
int16_t idx;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct DataBase {
bool mUsePdl{false};
// optional: only used as an intermediate buffer when the number of tokens is large.
// dim: max([2*NumThreads] = [512], mNumExperts*2)
int32_t* mPtrExpertCounts{nullptr};
// optional: if `nullptr`, it is not filled
// dim: [1]
int32_t* mPtrPermutedIdxSize{nullptr};
// optional: if `nullptr`, it is not filled
// dim: [mNumTokens * mTopK]
int32_t* mPtrExpandedIdxToPermutedIdx{nullptr};
// optional: if `nullptr`, it is not filled
// dim: [mNumTokens * mTopK + (mNumExperts << mPaddingLog2) - mNumExperts]
// Note: this array (mPtrPermutedIdxToTokenIdx) is uninitialized
// Any out-of-bounds values are undefined.
int32_t* mPtrPermutedIdxToTokenIdx{nullptr};
// optional: if `nullptr`, it is not filled
// dim: [mNumTokens, mTopK]
void* mPtrExpertWeights{nullptr};
// optional: if `nullptr`, scores are used directly as input.
// If it is given, it must represent a packed value s.t. the most significant
// 16/32 bits represent the score without sigmoid activation and
// the least significant 16 bits represent the index of the chosen expert (unsigned).
// note: this is required if the number of tokens is large.
// dim: [mNumTokens, mTopK]
void* mPtrExpertIdx{nullptr};
// optional: if `nullptr`, `mPtrExpertIdx` must be provided.
// If it is given, it represents the scores without sigmoid activation for
// each token and expert.
// note: if it is provided, we always re-compute the top1 scores
// dim: [mNumTokens, mNumExperts]
void const* mPtrScores{nullptr};
//
// Grouped Gemm Launch Config Buffers
//
int32_t* mPtrCtaIdxXyToBatchIdx{nullptr};
int32_t* mPtrCtaIdxXyToMnLimit{nullptr};
int32_t* mPtrNumNonExitingCtas{nullptr};
//
// Metadata
//
int32_t mNumTokens;
int32_t mNumExperts;
int32_t mTopK;
int32_t mPaddingLog2;
/// For expert parallelization
int32_t mLocalExpertsStartIdx;
int32_t mLocalExpertsStrideLog2;
int32_t mNumLocalExperts;
};
template <typename InputT_, typename OutputT_, bool UsePdl_>
struct KernelParamsBase {
using InputT = InputT_;
using OutputT = OutputT_;
static constexpr bool UsePdl = UsePdl_;
// Public pointer members
int32_t* mPtrExpertCounts = nullptr;
int32_t* mPtrPermutedIdxSize = nullptr;
int32_t* mPtrExpandedIdxToPermutedIdx = nullptr;
int32_t* mPtrPermutedIdxToTokenIdx = nullptr;
int32_t* mPtrCtaIdxXyToBatchIdx = nullptr;
int32_t* mPtrCtaIdxXyToMnLimit = nullptr;
int32_t* mPtrNumNonExitingCtas = nullptr;
OutputT* mPtrExpertWeights = nullptr;
InputT const* mPtrScores = nullptr;
// Public scalar members
int32_t mNumTokens = 0;
int32_t mNumExperts = 0;
int32_t mPaddingLog2 = 0;
int32_t mLocalExpertsStartIdx = 0;
int32_t mLocalExpertsStrideLog2 = 0;
int32_t mNumLocalExperts = 0;
// Public initialization function - make it a template to accept different Data types
template <typename DataType>
void setBaseParams(DataType const& data) {
mPtrExpertCounts = data.mPtrExpertCounts;
mPtrPermutedIdxSize = data.mPtrPermutedIdxSize;
mPtrExpandedIdxToPermutedIdx = data.mPtrExpandedIdxToPermutedIdx;
mPtrPermutedIdxToTokenIdx = data.mPtrPermutedIdxToTokenIdx;
mPtrCtaIdxXyToBatchIdx = data.mPtrCtaIdxXyToBatchIdx;
mPtrCtaIdxXyToMnLimit = data.mPtrCtaIdxXyToMnLimit;
mPtrNumNonExitingCtas = data.mPtrNumNonExitingCtas;
mPtrExpertWeights = static_cast<OutputT*>(data.mPtrExpertWeights);
mPtrScores = (InputT const*)data.mPtrScores;
mNumTokens = data.mNumTokens;
mNumExperts = data.mNumExperts;
mPaddingLog2 = data.mPaddingLog2;
mLocalExpertsStartIdx = data.mLocalExpertsStartIdx;
mLocalExpertsStrideLog2 = data.mLocalExpertsStrideLog2;
mNumLocalExperts = data.mNumLocalExperts;
}
};
namespace routingDeepSeek {
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Data : public DataBase {
tg::Dtype mDtypeExpW{tg::Dtype::Bfloat16};
//
// Grouped Gemm Launch Config Buffers
//
void const* mPtrRoutingBias;
int32_t mHiddenDim; // not used
int32_t mNumExpertGroups;
int32_t mNumLimitedGroups;
float mRouteScale;
bool mUseRoutingSoftmax;
};
template <typename InputT_, typename OutputT_, bool UseGroups_, bool UsePdl_>
struct KernelParams : public KernelParamsBase<InputT_, OutputT_, UsePdl_> {
using InputT = InputT_;
using OutputT = OutputT_;
static constexpr bool UseGroups = UseGroups_;
PackedScoreIdx<OutputT>* mPtrExpertIdx = nullptr;
// OutputT* mPtrExpertWeightsFull = nullptr;
// Note: this variable(mPtrExpertWeightsFull) might need to be added back for the low-latency
// kernels for MoE in tllm-gen in the future
OutputT const* mPtrRoutingBias = nullptr;
int32_t mNumExpertGroups = 0;
int32_t mNumExpertsPerGroup = 0;
int32_t mNumLimitedGroups = 0;
trtllm::dev::IntFastDiv mTopK;
float mRouteScale = 0.f;
static KernelParams setKernelParams(Data const& data) {
KernelParams params;
params.setBaseParams(data);
params.mPtrExpertIdx = (PackedScoreIdx<OutputT>*)data.mPtrExpertIdx;
// params.mPtrExpertWeightsFull = static_cast<OutputT*>(data.mPtrExpertWeightsFull);
params.mPtrRoutingBias = static_cast<OutputT const*>(data.mPtrRoutingBias);
params.mNumExpertGroups = data.mNumExpertGroups;
params.mNumExpertsPerGroup = data.mNumExperts / data.mNumExpertGroups;
params.mNumLimitedGroups = data.mNumLimitedGroups;
params.mTopK = trtllm::dev::IntFastDiv(data.mTopK);
params.mRouteScale = data.mRouteScale;
return params;
}
};
void run(Data& data, void* stream);
} // namespace routingDeepSeek
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace routingLlama4 {
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Data : public DataBase {
tg::Dtype mDtypeExpW{tg::Dtype::Bfloat16};
};
template <typename InputT_, typename OutputT_, bool UsePdl_>
struct KernelParams : public KernelParamsBase<InputT_, OutputT_, UsePdl_> {
using InputT = InputT_;
using OutputT = OutputT_;
PackedScoreIdx<OutputT>* mPtrExpertIdx = nullptr;
int32_t mTopK;
static KernelParams setKernelParams(Data const& data) {
KernelParams params;
params.setBaseParams(data);
params.mPtrExpertIdx = (PackedScoreIdx<OutputT>*)data.mPtrExpertIdx;
params.mTopK = data.mTopK;
return params;
}
};
void run(Data const& data, void* stream);
} // namespace routingLlama4
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace routingRenormalize {
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Data : public DataBase {
tg::Dtype mDtypeExpW{tg::Dtype::Fp32};
tg::Dtype mDtypeElt{tg::Dtype::Bfloat16};
bool mDoSoftmaxBeforeTopK{false};
bool mNormTopkProb{true}; // Default value is true for Qwen3 model
bool mApplySoftmaxAfterTopK{false};
};
template <typename InputT_, typename OutputT_, bool DoSoftmaxBeforeTopK_, bool UsePdl_>
struct KernelParams : public KernelParamsBase<InputT_, OutputT_, UsePdl_> {
using InputT = InputT_;
using OutputT = OutputT_;
static constexpr bool DoSoftmaxBeforeTopK = DoSoftmaxBeforeTopK_;
PackedScoreIdx<OutputT>* mPtrExpertIdx = nullptr;
int32_t mTopK = 0;
bool mNormTopkProb = true;
bool mApplySoftmaxAfterTopK = false;
static KernelParams setKernelParams(Data const& data) {
KernelParams params;
params.setBaseParams(data);
params.mPtrExpertIdx = (PackedScoreIdx<OutputT>*)data.mPtrExpertIdx;
params.mNormTopkProb = data.mNormTopkProb;
params.mApplySoftmaxAfterTopK = data.mApplySoftmaxAfterTopK;
params.mTopK = data.mTopK;
return params;
}
};
void run(Data const& data, void* stream);
} // namespace routingRenormalize
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace routing
} // namespace moe::dev