sglang_v0.5.2/pytorch_2.8.0/benchmarks/dynamo/microbenchmarks/overheads.py

42 lines
927 B
Python

import time
import timeit
import numpy as np
import torch
def add1(x):
return x + 1
def bench(name, fn, requires_grad):
torch._dynamo.reset()
x = torch.randn(1, requires_grad=requires_grad)
start = time.perf_counter()
for _ in range(3):
fn(x)
end = time.perf_counter()
results = timeit.repeat(lambda: fn(x), number=1000, repeat=1000)
print(f"{name} {np.median(results) * 1000:.1f}us (warmup={end - start:.1f}s)")
def main():
print("requires_grad=False")
bench("eager ", add1, False)
bench("compiled", torch.compile(add1), False)
print()
print("requires_grad=True")
bench("eager ", add1, True)
bench("compiled", torch.compile(add1), True)
print()
print("inference_mode()")
with torch.inference_mode():
bench("eager ", add1, False)
bench("compiled", torch.compile(add1), False)
if __name__ == "__main__":
main()