sglang_v0.5.2/pytorch_2.8.0/third_party/NNPACK/bench/sxgemm.cc

201 lines
4.5 KiB
C++

#include <cmath>
#include <cfloat>
#include <vector>
#include <random>
#include <chrono>
#include <functional>
#include <algorithm>
#include <cpuinfo.h>
#include <nnpack/macros.h>
#include <nnpack/blas.h>
#include <nnpack/AlignedAllocator.h>
#include <benchmark/benchmark.h>
template<uint32_t xr_, uint32_t mr_, uint32_t nr_>
class SXGEMM : public benchmark::Fixture {
public:
inline SXGEMM() {
cpuinfo_initialize();
const size_t l1_size = cpuinfo_get_l1d_cache(0)->size;
const size_t l2_size = cpuinfo_get_l2_cache(0)->size;
const size_t l1_reserve = 512;
const size_t l2_reserve = 2048;
kc_ = ((l1_size - l1_reserve) / sizeof(float) - xr() * mr() * nr()) / (xr() * mr() + xr() * nr());
mc_ = ((l2_size - l2_reserve) / sizeof(float) - xr() * nr() * kc()) / (xr() * nr() + xr() * kc());
mc_ = mc_ / mr() * mr();
}
virtual void SetUp(const benchmark::State&) override {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(), std::mt19937(seed));
a_.resize(xr() * mc() * kc());
std::generate(a_.begin(), a_.end(), std::ref(rng));
b_.resize(xr() * nr() * kc());
std::generate(b_.begin(), b_.end(), std::ref(rng));
c_.resize(xr() * mc() * nr());
std::fill(c_.begin(), c_.end(), std::nanf(""));
}
virtual void TearDown(benchmark::State& state) override {
state.SetItemsProcessed(uint64_t(state.iterations()) * 2 * xr() * mc() * nr() * kc());
a_.clear();
b_.clear();
c_.clear();
}
inline const float* a() const {
return a_.data();
}
inline const float* b() const {
return b_.data();
}
inline float* c() {
return c_.data();
}
inline uint32_t xr() const {
return xr_;
}
inline uint32_t mr() const {
return mr_;
}
inline uint32_t nr() const {
return nr_;
}
inline uint32_t kc() const {
return kc_;
}
inline uint32_t mc() const {
return mc_;
}
private:
std::vector<float, AlignedAllocator<float, 32>> a_;
std::vector<float, AlignedAllocator<float, 32>> b_;
std::vector<float, AlignedAllocator<float, 32>> c_;
uint32_t kc_;
uint32_t mc_;
};
#if NNP_BACKEND_X86_64
BENCHMARK_TEMPLATE_F(SXGEMM, fast__fma3, 8, 3, 4)(benchmark::State& state) {
for (auto _ : state) {
for (uint32_t m = 0; m < mc(); m += mr()) {
nnp_s8gemm_only_3x4__fma3(
kc(),
0,
a() + xr() * m * kc(),
b(),
c() + xr() * m * nr(),
xr() * nr());
}
}
}
#endif /* NNP_BACKEND_X86_64 */
#if NNP_BACKEND_ARM
#if CPUINFO_ARCH_ARM
BENCHMARK_TEMPLATE_F(SXGEMM, fast__aarch32_neon2, 4, 3, 3)(benchmark::State& state) {
if (!cpuinfo_has_arm_neon_fma()) {
state.SkipWithError("NEONv2 (NEON-FMA) is not supported");
}
for (auto _ : state) {
for (uint32_t m = 0; m < mc(); m += mr()) {
nnp_s4gemm_only_3x3__aarch32_neon2(
kc(),
0,
a() + xr() * m * kc(),
b(),
c() + xr() * m * nr(),
xr() * nr());
}
}
}
BENCHMARK_TEMPLATE_F(SXGEMM, fast__aarch32_neon, 4, 3, 3)(benchmark::State& state) {
for (auto _ : state) {
for (uint32_t m = 0; m < mc(); m += mr()) {
nnp_s4gemm_only_3x3__aarch32_neon(
kc(),
0,
a() + xr() * m * kc(),
b(),
c() + xr() * m * nr(),
xr() * nr());
}
}
}
#endif /* CPUINFO_ARCH_ARM */
BENCHMARK_TEMPLATE_F(SXGEMM, fast__neon, 4, 3, 3)(benchmark::State& state) {
for (auto _ : state) {
for (uint32_t m = 0; m < mc(); m += mr()) {
nnp_s4gemm_only_3x3__neon(
kc(),
0,
a() + xr() * m * kc(),
b(),
c() + xr() * m * nr(),
xr() * nr());
}
}
}
BENCHMARK_TEMPLATE_F(SXGEMM, full__neon, 4, 3, 3)(benchmark::State& state) {
for (auto _ : state) {
for (uint32_t m = 0; m < mc(); m += mr()) {
nnp_s4gemm_upto_3x3__neon(
3, 3,
kc(),
0,
a() + xr() * m * kc(),
b(),
c() + xr() * m * nr(),
xr() * nr());
}
}
}
#endif /* NNP_BACKEND_ARM */
#if NNP_BACKEND_PSIMD
BENCHMARK_TEMPLATE_F(SXGEMM, fast__psimd, 4, 3, 4)(benchmark::State& state) {
for (auto _ : state) {
for (uint32_t m = 0; m < mc(); m += mr()) {
nnp_s4gemm_only_3x4__psimd(
kc(),
0,
a() + xr() * m * kc(),
b(),
c() + xr() * m * nr(),
xr() * nr());
}
}
}
#endif /* NNP_BACKEND_PSIMD */
#if NNP_BACKEND_SCALAR
BENCHMARK_TEMPLATE_F(SXGEMM, fast__scalar, 2, 2, 2)(benchmark::State& state) {
for (uint32_t m = 0; m < mc(); m += mr()) {
nnp_s2gemm_only_2x2__scalar(
kc(),
0,
a() + xr() * m * kc(),
b(),
c() + xr() * m * nr(),
xr() * nr());
}
}
#endif /* NNP_BACKEND_SCALAR */
BENCHMARK_MAIN();