178 lines
5.1 KiB
C++
178 lines
5.1 KiB
C++
#include <cmath>
|
|
#include <cfloat>
|
|
#include <vector>
|
|
#include <random>
|
|
#include <chrono>
|
|
#include <functional>
|
|
#include <algorithm>
|
|
|
|
#include <cpuinfo.h>
|
|
#include <fp16.h>
|
|
#include <nnpack/macros.h>
|
|
#include <nnpack/transform.h>
|
|
#include <nnpack/AlignedAllocator.h>
|
|
|
|
#include <benchmark/benchmark.h>
|
|
|
|
|
|
template<class TransformedT>
|
|
class InputWinogradTransform : public benchmark::Fixture {
|
|
public:
|
|
inline InputWinogradTransform() {
|
|
cpuinfo_initialize();
|
|
const size_t l1d_size = cpuinfo_get_l1d_cache(0)->size;
|
|
const size_t l1d_reserve = 1024;
|
|
|
|
tiles_count_ = (l1d_size - l1d_reserve) / (tileElements() * (sizeof(float) + sizeof(TransformedT)));
|
|
}
|
|
|
|
virtual void SetUp(const benchmark::State&) override {
|
|
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
|
|
auto rng = std::bind(std::uniform_real_distribution<float>(), std::mt19937(seed));
|
|
|
|
input_.resize(tilesCount() * tileElements());
|
|
std::generate(input_.begin(), input_.end(), std::ref(rng));
|
|
transformedInput_.resize(tilesCount() * tileElements());
|
|
std::fill(transformedInput_.begin(), transformedInput_.end(), std::nanf(""));
|
|
}
|
|
|
|
virtual void TearDown(benchmark::State& state) override {
|
|
state.SetItemsProcessed(int64_t(state.iterations()) * tilesCount());
|
|
state.SetBytesProcessed(int64_t(state.iterations()) * tilesCount() * (tileElements() * (sizeof(float) + sizeof(TransformedT))));
|
|
input_.clear();
|
|
transformedInput_.clear();
|
|
}
|
|
|
|
inline const float* input() const {
|
|
return input_.data();
|
|
}
|
|
|
|
inline TransformedT* transformedInput() {
|
|
return transformedInput_.data();
|
|
}
|
|
|
|
inline uint32_t tilesCount() const {
|
|
return tiles_count_;
|
|
}
|
|
|
|
inline uint32_t tileSize() const {
|
|
return 8;
|
|
}
|
|
|
|
inline uint32_t tileElements() const {
|
|
return tileSize() * tileSize();
|
|
}
|
|
|
|
private:
|
|
std::vector<float> input_;
|
|
std::vector<TransformedT, AlignedAllocator<TransformedT, 32>> transformedInput_;
|
|
uint32_t tiles_count_;
|
|
};
|
|
|
|
template<class TransformedT>
|
|
class OutputWinogradTransform : public benchmark::Fixture {
|
|
public:
|
|
inline OutputWinogradTransform() {
|
|
cpuinfo_initialize();
|
|
const size_t l1d_size = cpuinfo_get_l1d_cache(0)->size;
|
|
const size_t l1d_reserve = 1024;
|
|
|
|
tiles_count_ = (l1d_size - l1d_reserve) / (tileElements() * (sizeof(float) + sizeof(TransformedT)));
|
|
}
|
|
|
|
virtual void SetUp(const benchmark::State&) override {
|
|
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
|
|
auto rng = std::bind(fp16_ieee_from_fp32_value,
|
|
std::bind(std::uniform_real_distribution<float>(), std::mt19937(seed)));
|
|
|
|
output_.resize(tilesCount() * tileElements());
|
|
std::generate(output_.begin(), output_.end(), std::ref(rng));
|
|
transformedOutput_.resize(tilesCount() * tileElements());
|
|
std::fill(transformedOutput_.begin(), transformedOutput_.end(), std::nanf(""));
|
|
}
|
|
|
|
virtual void TearDown(benchmark::State& state) override {
|
|
state.SetItemsProcessed(int64_t(state.iterations()) * tilesCount());
|
|
state.SetBytesProcessed(int64_t(state.iterations()) * tilesCount() * (tileElements() * (sizeof(float) + sizeof(TransformedT))));
|
|
transformedOutput_.clear();
|
|
output_.clear();
|
|
}
|
|
|
|
inline const TransformedT* transformedOutput() const {
|
|
return transformedOutput_.data();
|
|
}
|
|
|
|
inline float* output() {
|
|
return output_.data();
|
|
}
|
|
|
|
inline uint32_t tilesCount() const {
|
|
return tiles_count_;
|
|
}
|
|
|
|
inline uint32_t tileSize() const {
|
|
return 8;
|
|
}
|
|
|
|
inline uint32_t tileElements() const {
|
|
return tileSize() * tileSize();
|
|
}
|
|
|
|
private:
|
|
std::vector<TransformedT, AlignedAllocator<TransformedT, 32>> transformedOutput_;
|
|
std::vector<float> output_;
|
|
uint32_t tiles_count_;
|
|
};
|
|
|
|
#if NNP_BACKEND_ARM
|
|
BENCHMARK_TEMPLATE_F(InputWinogradTransform, neon, float)(benchmark::State& state) {
|
|
for (auto _ : state) {
|
|
for (uint32_t i = 0; i < tilesCount(); i++) {
|
|
nnp_iwt8x8_3x3_with_offset__neon(
|
|
input() + i * tileElements(),
|
|
transformedInput() + i * tileElements(),
|
|
tileSize(), tileSize() * sizeof(float),
|
|
tileSize(), tileSize(), 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
BENCHMARK_TEMPLATE_F(InputWinogradTransform, neonhp, uint16_t)(benchmark::State& state) {
|
|
for (auto _ : state) {
|
|
for (uint32_t i = 0; i < tilesCount(); i++) {
|
|
nnp_iwt8x8_3x3_fp16_with_offset__neonhp(
|
|
input() + i * tileElements(),
|
|
transformedInput() + i * tileElements(),
|
|
tileSize(), tileSize() * sizeof(uint16_t),
|
|
tileSize(), tileSize(), 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
BENCHMARK_TEMPLATE_F(OutputWinogradTransform, neon, float)(benchmark::State& state) {
|
|
for (auto _ : state) {
|
|
for (uint32_t i = 0; i < tilesCount(); i++) {
|
|
nnp_owt8x8_3x3__neon(
|
|
transformedOutput() + i * tileElements(),
|
|
output() + i * tileElements(),
|
|
tileSize() * sizeof(float), tileSize(),
|
|
tileSize(), tileSize(), 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
BENCHMARK_TEMPLATE_F(OutputWinogradTransform, neonhp, uint16_t)(benchmark::State& state) {
|
|
for (auto _ : state) {
|
|
for (uint32_t i = 0; i < tilesCount(); i++) {
|
|
nnp_owt8x8_3x3_fp16__neonhp(
|
|
transformedOutput() + i * tileElements(),
|
|
output() + i * tileElements(),
|
|
tileSize() * sizeof(uint16_t), tileSize(),
|
|
tileSize(), tileSize(), 0, 0);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
BENCHMARK_MAIN();
|