sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/bench/f32-softmax.cc

475 lines
17 KiB
C++

#include <algorithm>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <functional>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#ifdef BENCHMARK_INTEL_DNNL
#include <dnnl.h>
#endif // BENCHMARK_INTEL_DNNL
#include "utils.h"
#include "xnnpack.h"
#include "xnnpack/common.h"
#include "xnnpack/microfnptr.h"
#include "xnnpack/microparams-init.h"
#include "xnnpack/raddexpminusmax.h"
#include "xnnpack/raddextexp.h"
#include "xnnpack/raddstoreexpminusmax.h"
#include "xnnpack/vbinary.h"
#include "xnnpack/reduce.h"
#include "xnnpack/vscaleexpminusmax.h"
#include "xnnpack/vscaleextexp.h"
#include "xnnpack/buffer.h"
#ifdef BENCHMARK_INTEL_DNNL
// Macros to help transition from oneDNN v2 to v3.
#if DNNL_VERSION_MAJOR == 2
#define DNNL_MEMORY_DESC_INIT dnnl_memory_desc_init_by_tag
#define DNNL_MEMORY_CREATE(mem, mem_desc, engine, handle) \
dnnl_memory_create(&mem, &mem_desc, engine, handle)
#else // DNNL_VERSION_MAJOR == 3
#define DNNL_MEMORY_DESC_INIT dnnl_memory_desc_create_with_tag
#define DNNL_MEMORY_CREATE(mem, mem_desc, engine, handle) \
dnnl_memory_create(&mem, mem_desc, engine, handle)
#endif // DNNL_VERSION_MAJOR == 2
static void DNNLSoftArgMax(
benchmark::State& state)
{
const size_t elements = state.range(0);
const size_t cache_line_size_max = 128;
const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float));
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1000.0f, 1000.0f), std::ref(rng));
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float));
xnnpack::Buffer<float> x(elements);
xnnpack::Buffer<float> y(packed_elements * num_buffers);
std::generate(x.begin(), x.end(), std::ref(f32rng));
dnnl_engine_t engine;
if (dnnl_engine_create(&engine, dnnl_cpu, 0) != dnnl_success) {
state.SkipWithError("failed to create CPU engine");
return;
}
dnnl_dim_t input_output_shape[1] = { static_cast<int>(elements) };
dnnl_memory_desc_t memory_descriptor = { 0 };
if (DNNL_MEMORY_DESC_INIT(
&memory_descriptor, 1, input_output_shape, dnnl_f32, dnnl_x) != dnnl_success)
{
state.SkipWithError("failed to create input memory descriptor");
return;
}
dnnl_memory_t input_memory = nullptr;
if (DNNL_MEMORY_CREATE(
input_memory, memory_descriptor, engine, x.data()) != dnnl_success)
{
state.SkipWithError("failed to create input memory");
return;
}
dnnl_memory_t output_memory = nullptr;
if (DNNL_MEMORY_CREATE(
output_memory, memory_descriptor, engine, y.data()) != dnnl_success)
{
state.SkipWithError("failed to create output memory");
return;
}
#if DNNL_VERSION_MAJOR == 2
dnnl_softmax_desc_t softmax_forward_descriptor = {};
if (dnnl_softmax_forward_desc_init(
&softmax_forward_descriptor, dnnl_forward_inference,
&memory_descriptor, 0) != dnnl_success)
{
state.SkipWithError("failed to create SoftMax forward descriptor");
return;
}
#endif // DNNL_VERSION_MAJOR == 2
dnnl_primitive_desc_t softmax_primitive_descriptor = nullptr;
#if DNNL_VERSION_MAJOR == 2
if (dnnl_primitive_desc_create(
&softmax_primitive_descriptor, &softmax_forward_descriptor,
nullptr /* primitive attributes */, engine, nullptr /* hint */) != dnnl_success)
#else // DNNL_VERSION_MAJOR == 3
if (dnnl_softmax_forward_primitive_desc_create(
&softmax_primitive_descriptor, engine, dnnl_forward_inference,
dnnl_softmax_accurate, /*src_desc=*/ memory_descriptor,
/*dst_dsc=*/ memory_descriptor, /*softmax_axis=*/ 0,
/*attr=*/ nullptr) != dnnl_success)
#endif // DNNL_VERSION_MAJOR == 2
{
state.SkipWithError("failed to create SoftMax primitive descriptor");
return;
}
dnnl_primitive_t softmax_primitive = nullptr;
if (dnnl_primitive_create(
&softmax_primitive, softmax_primitive_descriptor) != dnnl_success)
{
state.SkipWithError("failed to create SoftMax primitive");
return;
}
dnnl_exec_arg_t softmax_args[2] = {
{DNNL_ARG_SRC, input_memory},
{DNNL_ARG_DST, output_memory},
};
dnnl_stream_t stream = nullptr;
if (dnnl_stream_create(&stream, engine, dnnl_stream_default_flags) != dnnl_success) {
state.SkipWithError("failed to create stream");
return;
}
size_t buffer_index = 0;
for (auto _ : state) {
benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float));
if (++buffer_index == num_buffers) {
buffer_index = 0;
}
const auto start = std::chrono::high_resolution_clock::now();
if (dnnl_primitive_execute(
softmax_primitive, stream, 2, softmax_args) != dnnl_success)
{
state.SkipWithError("failed to execute SoftMax");
return;
}
const auto end = std::chrono::high_resolution_clock::now();
const auto elapsed_seconds =
std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
state.SetIterationTime(elapsed_seconds.count());
}
if (dnnl_stream_destroy(stream) != dnnl_success) {
state.SkipWithError("failed to destroy stream");
return;
}
if (dnnl_primitive_desc_destroy(softmax_primitive_descriptor) != dnnl_success) {
state.SkipWithError("failed to destroy SoftMax primitive descriptor");
return;
}
if (dnnl_primitive_destroy(softmax_primitive) != dnnl_success) {
state.SkipWithError("failed to destroy SoftMax primitive");
return;
}
if (dnnl_memory_destroy(input_memory) != dnnl_success) {
state.SkipWithError("failed to destroy input memory");
return;
}
if (dnnl_memory_destroy(output_memory) != dnnl_success) {
state.SkipWithError("failed to destroy output memory");
return;
}
if (dnnl_engine_destroy(engine) != dnnl_success) {
state.SkipWithError("failed to destroy engine");
return;
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = elements;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
#endif // BENCHMARK_INTEL_DNNL
static void ThreePassSoftMaxWithRecomputing(
benchmark::State& state,
xnn_f32_rmax_ukernel_fn rmax,
xnn_init_f32_default_params_fn init_rmax_params,
xnn_f32_raddexpminusmax_ukernel_fn raddexpminusmax,
xnn_f32_vscaleexpminusmax_ukernel_fn vscaleexpminusmax,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t elements = state.range(0);
const size_t cache_line_size_max = 128;
const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float));
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1000.0f, 1000.0f), std::ref(rng));
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float));
xnnpack::Buffer<float> x(elements);
xnnpack::Buffer<float> y(packed_elements * num_buffers);
std::generate(x.begin(), x.end(), std::ref(f32rng));
benchmark::utils::DisableDenormals();
xnn_f32_default_params rmax_params;
if (init_rmax_params) {
init_rmax_params(&rmax_params);
}
size_t buffer_index = 0;
for (auto _ : state) {
benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float));
if (++buffer_index == num_buffers) {
buffer_index = 0;
}
const auto start = std::chrono::high_resolution_clock::now();
float x_max;
rmax(elements * sizeof(float), x.data(), &x_max, &rmax_params);
float y_sum;
raddexpminusmax(elements * sizeof(float), x.data(), &y_sum, x_max);
vscaleexpminusmax(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, x_max, 1.0f / y_sum);
const auto end = std::chrono::high_resolution_clock::now();
const auto elapsed_seconds =
std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
state.SetIterationTime(elapsed_seconds.count());
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = elements;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void ThreePassSoftMaxWithReloading(
benchmark::State& state,
xnn_f32_rmax_ukernel_fn rmax,
xnn_init_f32_default_params_fn init_rmax_params,
xnn_f32_raddstoreexpminusmax_ukernel_fn raddstoreexpminusmax,
xnn_init_f32_expminus_params_fn init_expminus_params,
xnn_f32_vbinary_ukernel_fn vmulc,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t elements = state.range(0);
const size_t cache_line_size_max = 128;
const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float));
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1000.0f, 1000.0f), std::ref(rng));
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float));
xnnpack::Buffer<float> x(elements);
xnnpack::Buffer<float> y(packed_elements * num_buffers);
std::generate(x.begin(), x.end(), std::ref(f32rng));
benchmark::utils::DisableDenormals();
xnn_f32_default_params rmax_params;
xnn_f32_default_params expminus_params;
if (init_rmax_params) {
init_rmax_params(&rmax_params);
}
if (init_expminus_params) {
init_expminus_params(&expminus_params);
}
size_t buffer_index = 0;
for (auto _ : state) {
benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float));
if (++buffer_index == num_buffers) {
buffer_index = 0;
}
const auto start = std::chrono::high_resolution_clock::now();
float x_max;
rmax(elements * sizeof(float), x.data(), &x_max, &rmax_params);
float y_sum;
raddstoreexpminusmax(elements * sizeof(float), x.data(), &x_max, y.data() + packed_elements * buffer_index, &y_sum, &expminus_params);
const float inv_y_sum = 1.0f / y_sum;
vmulc(elements * sizeof(float), y.data() + packed_elements * buffer_index, &inv_y_sum, y.data() + packed_elements * buffer_index, nullptr);
const auto end = std::chrono::high_resolution_clock::now();
const auto elapsed_seconds =
std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
state.SetIterationTime(elapsed_seconds.count());
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = elements;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void TwoPassSoftMax(
benchmark::State& state,
xnn_f32_raddextexp_ukernel_fn raddextexp,
xnn_f32_vscaleextexp_ukernel_fn vscaleextexp,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check != nullptr && !isa_check(state)) {
return;
}
const size_t elements = state.range(0);
const size_t cache_line_size_max = 128;
const size_t packed_elements = benchmark::utils::RoundUp(elements, cache_line_size_max / sizeof(float));
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1000.0f, 1000.0f), std::ref(rng));
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), packed_elements * sizeof(float));
xnnpack::Buffer<float> x(elements);
xnnpack::Buffer<float> y(packed_elements * num_buffers);
std::generate(x.begin(), x.end(), std::ref(f32rng));
benchmark::utils::DisableDenormals();
size_t buffer_index = 0;
for (auto _ : state) {
benchmark::utils::PrefetchToL1(x.data(), x.size() * sizeof(float));
if (++buffer_index == num_buffers) {
buffer_index = 0;
}
const auto start = std::chrono::high_resolution_clock::now();
float scale[2];
raddextexp(elements * sizeof(float), x.data(), scale);
vscaleextexp(elements * sizeof(float), x.data(), y.data() + packed_elements * buffer_index, 1.0f / scale[0], -scale[1]);
const auto end = std::chrono::high_resolution_clock::now();
const auto elapsed_seconds =
std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
state.SetIterationTime(elapsed_seconds.count());
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = elements;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void CharacteristicArguments(benchmark::internal::Benchmark* b) {
// Size Iterations Parameters used by Stable Diffusion
b->Arg( 128); // 1
b->Arg( 154); // 421
b->Arg( 512); // 20
b->Arg(2048); // 80
b->Arg(8192); // 320
for (int32_t n = 10000; n <= 1000000; n *= 10) {
b->Arg(n);
}
}
#ifdef BENCHMARK_INTEL_DNNL
BENCHMARK(DNNLSoftArgMax)->Apply(CharacteristicArguments)->UseManualTime();
#endif
#if XNN_ENABLE_AVX512F && (XNN_ARCH_X86 || XNN_ARCH_X86_64)
BENCHMARK_CAPTURE(TwoPassSoftMax, avx512f_p5_scalef,
xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_u144_acc3,
xnn_f32_vscaleextexp_ukernel__avx512f_p5_scalef_u16,
benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime();
BENCHMARK_CAPTURE(ThreePassSoftMaxWithRecomputing, avx512f_p5_scalef,
xnn_f32_rmax_ukernel__avx512f_u64_acc4,
(xnn_init_f32_default_params_fn) nullptr,
xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_u128_acc4,
xnn_f32_vscaleexpminusmax_ukernel__avx512f_p5_scalef_u16,
benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime();
BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, avx512f_p5_scalef,
xnn_f32_rmax_ukernel__avx512f_u64_acc4,
(xnn_init_f32_default_params_fn) nullptr,
xnn_f32_raddstoreexpminusmax_ukernel__avx512f_rr1_p5_scalef_u64_acc2,
nullptr,
xnn_f32_vmulc_ukernel__avx512f_u32,
benchmark::utils::CheckAVX512F)->Apply(CharacteristicArguments)->UseManualTime();
#endif // XNN_ENABLE_AVX512F && (XNN_ARCH_X86 || XNN_ARCH_X86_64)
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
BENCHMARK_CAPTURE(TwoPassSoftMax, avx2_p5,
xnn_f32_raddextexp_ukernel__avx2_p5_u96,
xnn_f32_vscaleextexp_ukernel__avx2_p5_u32,
benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime();
BENCHMARK_CAPTURE(ThreePassSoftMaxWithRecomputing, avx2_p5,
xnn_f32_rmax_ukernel__avx_u32_acc4,
(xnn_init_f32_default_params_fn) nullptr,
xnn_f32_raddexpminusmax_ukernel__avx2_p5_u96,
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_u24,
benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime();
BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, avx2_p5,
xnn_f32_rmax_ukernel__avx_u32_acc4,
(xnn_init_f32_default_params_fn) nullptr,
xnn_f32_raddstoreexpminusmax_ukernel__avx2_rr1_p5_u32_acc2,
nullptr,
xnn_f32_vmulc_ukernel__avx_u16,
benchmark::utils::CheckAVX2)->Apply(CharacteristicArguments)->UseManualTime();
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ENABLE_RISCV_VECTOR && XNN_ARCH_RISCV
BENCHMARK_CAPTURE(ThreePassSoftMaxWithReloading, rvv_p6_rmax_m8_exp_m4_vmulc_m8,
xnn_f32_rmax_ukernel__rvv_u8v,
(xnn_init_f32_default_params_fn) nullptr,
xnn_f32_raddstoreexpminusmax_ukernel__rvv_rr2_p6_u4v,
nullptr,
xnn_f32_vmulc_ukernel__rvv_u8v,
benchmark::utils::CheckRVV)->Apply(CharacteristicArguments)->UseManualTime();
#endif // XNN_ENABLE_RISCV_VECTOR && XNN_ARCH_RISCV
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif