127 lines
4.3 KiB
C++
127 lines
4.3 KiB
C++
// Copyright 2020 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <algorithm>
|
|
#include <cfloat>
|
|
#include <chrono>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <mutex>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <benchmark/benchmark.h>
|
|
#include "gemm-benchmark.h"
|
|
#include "utils.h"
|
|
#ifdef BENCHMARK_RUY
|
|
#include "ruy/ruy.h"
|
|
#endif // BENCHMARK_RUY
|
|
|
|
#include "xnnpack/buffer.h"
|
|
#include "xnnpack/isa-checks.h"
|
|
#include "xnnpack/gemm.h"
|
|
#include "xnnpack/microfnptr.h"
|
|
#include "xnnpack/microparams-init.h"
|
|
|
|
|
|
#ifdef BENCHMARK_RUY
|
|
static void RuyBenchmark(benchmark::State& state, size_t threads)
|
|
{
|
|
const size_t mc = state.range(0);
|
|
const size_t nc = state.range(1);
|
|
const size_t kc = state.range(2);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
|
|
|
|
const size_t num_buffers = 1 +
|
|
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
|
|
nc * (sizeof(int8_t) * (mc + kc) + sizeof(int32_t)));
|
|
|
|
xnnpack::Buffer<int8_t> a(mc * kc);
|
|
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
|
|
xnnpack::Buffer<int8_t> k(num_buffers * nc * kc);
|
|
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
|
|
xnnpack::Buffer<int32_t> b(num_buffers * nc);
|
|
std::generate(b.begin(), b.end(), std::ref(i32rng));
|
|
xnnpack::Buffer<int8_t> c(num_buffers * nc * mc);
|
|
|
|
// Note: context must be static to avoid the cost of re-creating it for each benchmark.
|
|
static ruy::Context context;
|
|
context.set_max_num_threads(threads);
|
|
|
|
ruy::Matrix<int8_t> ruy_a;
|
|
ruy::MakeSimpleLayout(nc, kc, ruy::Order::kRowMajor, ruy_a.mutable_layout());
|
|
ruy_a.set_zero_point(127);
|
|
ruy::Matrix<int8_t> ruy_b;
|
|
ruy::MakeSimpleLayout(kc, mc, ruy::Order::kColMajor, ruy_b.mutable_layout());
|
|
ruy_b.set_data(a.data());
|
|
ruy_b.set_zero_point(127);
|
|
ruy_b.set_cache_policy(ruy::CachePolicy::kAlwaysCache);
|
|
ruy::Matrix<int8_t> ruy_c;
|
|
ruy::MakeSimpleLayout(nc, mc, ruy::Order::kColMajor, ruy_c.mutable_layout());
|
|
ruy_c.set_zero_point(127);
|
|
|
|
ruy::MulParams<int32_t, int8_t> mul_params;
|
|
mul_params.set_multiplier_fixedpoint(0x40000000);
|
|
|
|
// ruy::Context uses deferred initialization, which affects percieved GEMM performance. Initialization happens during
|
|
// the first GEMM calls, and per Benoit Jacob it takes up to ~250 milliseconds for performance to stabilize.
|
|
// Thus, on the first benchmark, we compute GEMM for 500 milliseconds (to be safe) without recording performance, and
|
|
// keep the ruy::Context object initialized (by being static) between subsequent benchmarks.
|
|
static std::once_flag warmup;
|
|
std::call_once(warmup, [&](){
|
|
auto start = std::chrono::steady_clock::now();
|
|
do {
|
|
ruy_a.set_data(k.data());
|
|
ruy_c.set_data(c.data());
|
|
mul_params.set_bias(b.data());
|
|
|
|
ruy::Mul(ruy_a, ruy_b, mul_params, &context, &ruy_c);
|
|
} while (std::chrono::duration<double>(std::chrono::steady_clock::now() - start).count() < 0.5);
|
|
});
|
|
|
|
size_t buffer_index = 0;
|
|
for (auto _ : state) {
|
|
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
|
|
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
|
|
// - K is not in cache (for any cache level)
|
|
// - B is not in cache (for any cache level)
|
|
// - C is not in cache (for any cache level)
|
|
state.PauseTiming();
|
|
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(int8_t));
|
|
buffer_index = (buffer_index + 1) % num_buffers;
|
|
state.ResumeTiming();
|
|
|
|
ruy_a.set_data(k.data() + buffer_index * nc * kc);
|
|
ruy_c.set_data(c.data() + buffer_index * mc * nc);
|
|
mul_params.set_bias(b.data() + buffer_index * nc);
|
|
|
|
ruy::Mul(ruy_a, ruy_b, mul_params, &context, &ruy_c);
|
|
}
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
state.counters["OPS"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
|
|
}
|
|
|
|
static void ruy_st(benchmark::State& state, const char* net)
|
|
{
|
|
RuyBenchmark(state, 1);
|
|
}
|
|
BENCHMARK_GEMM(ruy_st)
|
|
|
|
#endif // BENCHMARK_RUY
|
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN
|
|
BENCHMARK_MAIN();
|
|
#endif
|