sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/argmaxpool-microkernel-test...

293 lines
11 KiB
C++

// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/microfnptr.h"
#include "xnnpack/buffer.h"
#include "replicable_random_device.h"
class ArgMaxPoolMicrokernelTester {
public:
enum class Variant {
Native,
Scalar,
};
ArgMaxPoolMicrokernelTester& output_pixels(size_t output_pixels) {
assert(output_pixels != 0);
this->output_pixels_ = output_pixels;
return *this;
}
size_t output_pixels() const {
return this->output_pixels_;
}
ArgMaxPoolMicrokernelTester& step(size_t step) {
assert(step != 0);
this->step_ = step;
return *this;
}
size_t step() const {
return this->step_;
}
ArgMaxPoolMicrokernelTester& input_offset(size_t input_offset) {
assert(input_offset != 0);
this->input_offset_ = input_offset;
return *this;
}
size_t input_offset() const {
return this->input_offset_;
}
ArgMaxPoolMicrokernelTester& pooling_elements(size_t pooling_elements) {
assert(pooling_elements != 0);
this->pooling_elements_ = pooling_elements;
return *this;
}
size_t pooling_elements() const {
return this->pooling_elements_;
}
size_t packed_pooling_elements() const {
if (pooling_elements() <= primary_pooling_tile()) {
return primary_pooling_tile();
} else {
return (pooling_elements() - primary_pooling_tile()) % incremental_pooling_tile() == 0 ? pooling_elements() : ((pooling_elements() - primary_pooling_tile()) / incremental_pooling_tile() + 1) * incremental_pooling_tile() + primary_pooling_tile();
}
}
ArgMaxPoolMicrokernelTester& pooling_tile(size_t primary_tile) {
assert(primary_tile != 0);
this->primary_pooling_tile_ = primary_tile;
this->incremental_pooling_tile_ = 0;
return *this;
}
ArgMaxPoolMicrokernelTester& pooling_tile(size_t primary_tile, size_t incremental_tile) {
assert(primary_tile != 0);
this->primary_pooling_tile_ = primary_tile;
this->incremental_pooling_tile_ = incremental_tile;
return *this;
}
ArgMaxPoolMicrokernelTester& primary_pooling_tile(size_t primary_pooling_tile) {
assert(primary_pooling_tile != 0);
this->primary_pooling_tile_ = primary_pooling_tile;
return *this;
}
size_t primary_pooling_tile() const {
return this->primary_pooling_tile_;
}
ArgMaxPoolMicrokernelTester& incremental_pooling_tile(size_t incremental_pooling_tile) {
assert(incremental_pooling_tile != 0);
this->incremental_pooling_tile_ = incremental_pooling_tile;
return *this;
}
size_t incremental_pooling_tile() const {
return this->incremental_pooling_tile_;
}
ArgMaxPoolMicrokernelTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
size_t channels() const {
return this->channels_;
}
ArgMaxPoolMicrokernelTester& output_stride(size_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
size_t output_stride() const {
if (this->output_stride_ == 0) {
return channels();
} else {
assert(this->output_stride_ >= channels());
return this->output_stride_;
}
}
ArgMaxPoolMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
size_t iterations() const {
return this->iterations_;
}
void Test(xnn_f32_argmaxpool_unipass_ukernel_fn argmaxpool, Variant variant = Variant::Native) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
xnnpack::Buffer<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<float> input(XNN_EXTRA_BYTES / sizeof(float) +
((output_pixels() - 1) * step() + pooling_elements()) * channels());
xnnpack::Buffer<float> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<uint32_t> index(output_pixels() * channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
xnnpack::Buffer<uint32_t> index_ref(output_pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels() - input_offset();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float max_value = indirect_input[x * step()][c + input_offset()];
uint32_t max_index = 0;
for (size_t p = 0; p < pooling_elements(); p++) {
const float value = indirect_input[x * step() + p][c + input_offset()];
if (value > max_value) {
max_value = value;
max_index = p;
}
}
output_ref[x * channels() + c] = max_value;
index_ref[x * channels() + c] = max_index;
}
}
// Call optimized micro-kernel.
argmaxpool(output_pixels(), pooling_elements(), channels(),
indirect_input.data(), input_offset() * sizeof(float), output.data(), index.data(),
step() * sizeof(void*),
(output_stride() - channels()) * sizeof(float));
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_EQ(output_ref[x * channels() + c], output[x * output_stride() + c])
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_EQ(
indirect_input[x * step() + index_ref[x * channels() + c]][c + input_offset()],
indirect_input[x * step() + index[x * channels() + c]][c + input_offset()])
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_EQ(index_ref[x * channels() + c], index[x * channels() + c])
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
void Test(xnn_f32_argmaxpool_multipass_ukernel_fn argmaxpool, Variant variant = Variant::Native) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
xnnpack::Buffer<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<float> input(XNN_EXTRA_BYTES / sizeof(float) +
((output_pixels() - 1) * step() + pooling_elements()) * channels());
xnnpack::Buffer<float> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<uint32_t> index(output_pixels() * channels());
xnnpack::Buffer<uint32_t, XNN_ALLOCATION_ALIGNMENT> index_buffer(
channels() + XNN_EXTRA_BYTES / sizeof(uint32_t));
xnnpack::Buffer<float, XNN_ALLOCATION_ALIGNMENT> output_buffer(
channels() + XNN_EXTRA_BYTES / sizeof(float));
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
xnnpack::Buffer<uint32_t> index_ref(output_pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels() - input_offset();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float max_value = indirect_input[x * step()][c + input_offset()];
uint32_t max_index = 0;
for (size_t p = 0; p < pooling_elements(); p++) {
const float value = indirect_input[x * step() + p][c + input_offset()];
if (value > max_value) {
max_value = value;
max_index = p;
}
}
output_ref[x * channels() + c] = max_value;
index_ref[x * channels() + c] = max_index;
}
}
// Call optimized micro-kernel.
argmaxpool(output_pixels(), pooling_elements(), channels(),
indirect_input.data(), input_offset() * sizeof(float),
output_buffer.data(), index_buffer.data(),
output.data(), index.data(),
(step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
(output_stride() - channels()) * sizeof(float));
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_EQ(output_ref[x * channels() + c], output[x * output_stride() + c])
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_EQ(
indirect_input[x * step() + index_ref[x * channels() + c]][c + input_offset()],
indirect_input[x * step() + index[x * channels() + c]][c + input_offset()])
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_EQ(index_ref[x * channels() + c], index[x * channels() + c])
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
private:
size_t output_pixels_{1};
size_t pooling_elements_{1};
size_t channels_{1};
size_t input_offset_{0};
size_t step_{1};
size_t primary_pooling_tile_{1};
size_t incremental_pooling_tile_{1};
size_t output_stride_{0};
size_t iterations_{3};
};