sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/f16-simd-scalar.cc

621 lines
20 KiB
C++

// Auto-generated file. Do not edit!
// Template: test/f16-simd.cc.in
// Generator: tools/xngen
//
// Copyright 2024 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <random>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "xnnpack/isa-checks.h"
#include "xnnpack/simd/f16-scalar.h"
#include "xnnpack/fp16.h"
#include "replicable_random_device.h"
namespace xnnpack {
class F16SimdSCALARTest : public ::testing::Test {
protected:
void SetUp() override {
inputs_.resize(3 * xnn_simd_size_f16);
output_.resize(xnn_simd_size_f16);
std::uniform_real_distribution<float> f32dist(-10.0f, 10.0f);
std::generate(inputs_.begin(), inputs_.end(),
[&]() { return fp16_ieee_from_fp32_value(f32dist(rng_)); });
}
static std::vector<float> ToFloat32(const std::vector<uint16_t> &values) {
std::vector<float> result;
result.reserve(values.size());
for (const uint16_t &value : values) {
result.push_back(fp16_ieee_to_fp32_value(value));
}
return result;
}
static float TruncToF16(float value) {
return fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(value));
}
xnnpack::ReplicableRandomDevice rng_;
std::vector<uint16_t> inputs_;
std::vector<uint16_t> output_;
};
TEST_F(F16SimdSCALARTest, SetZero) {
xnn_storeu_f16(output_.data(), xnn_zero_f16());
EXPECT_THAT(ToFloat32(output_), testing::Each(testing::Eq(0.0f)));
}
TEST_F(F16SimdSCALARTest, Add) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_add_f16(a, b);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k],
TruncToF16(inputs_f32[k] + inputs_f32[k + xnn_simd_size_f16]));
}
}
TEST_F(F16SimdSCALARTest, Mul) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_mul_f16(a, b);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k],
TruncToF16(inputs_f32[k] * inputs_f32[k + xnn_simd_size_f16]));
}
}
TEST_F(F16SimdSCALARTest, Fmadd) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t c =
xnn_loadu_f16(inputs_.data() + 2 * xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_fmadd_f16(a, b, c);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k],
TruncToF16(inputs_f32[k] * inputs_f32[k + xnn_simd_size_f16] +
inputs_f32[k + 2 * xnn_simd_size_f16]));
}
}
TEST_F(F16SimdSCALARTest, Fmsub) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t c =
xnn_loadu_f16(inputs_.data() + 2 * xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_fmsub_f16(a, b, c);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k],
TruncToF16(inputs_f32[k] * inputs_f32[k + xnn_simd_size_f16] -
inputs_f32[k + 2 * xnn_simd_size_f16]));
}
}
TEST_F(F16SimdSCALARTest, Fnmadd) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t c =
xnn_loadu_f16(inputs_.data() + 2 * xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_fnmadd_f16(a, b, c);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k],
TruncToF16(-inputs_f32[k] * inputs_f32[k + xnn_simd_size_f16] +
inputs_f32[k + 2 * xnn_simd_size_f16]));
}
}
TEST_F(F16SimdSCALARTest, Sub) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_sub_f16(a, b);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k],
TruncToF16(inputs_f32[k] - inputs_f32[k + xnn_simd_size_f16]));
}
}
TEST_F(F16SimdSCALARTest, Div) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_div_f16(a, b);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_NEAR(output_f32[k],
inputs_f32[k] / inputs_f32[k + xnn_simd_size_f16],
2 * 9.77e-04 * std::abs(output_f32[k]));
}
}
TEST_F(F16SimdSCALARTest, Max) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_max_f16(a, b);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k],
std::max(inputs_f32[k], inputs_f32[k + xnn_simd_size_f16]));
}
}
TEST_F(F16SimdSCALARTest, Min) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_min_f16(a, b);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k],
std::min(inputs_f32[k], inputs_f32[k + xnn_simd_size_f16]));
}
}
TEST_F(F16SimdSCALARTest, Abs) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t res = xnn_abs_f16(a);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k], std::abs(inputs_f32[k]));
}
}
TEST_F(F16SimdSCALARTest, Neg) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t res = xnn_neg_f16(a);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k], -inputs_f32[k]);
}
}
TEST_F(F16SimdSCALARTest, And) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_and_f16(a, b);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] & inputs_[k + xnn_simd_size_f16]);
}
}
TEST_F(F16SimdSCALARTest, Or) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_or_f16(a, b);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] | inputs_[k + xnn_simd_size_f16]);
}
}
TEST_F(F16SimdSCALARTest, Xor) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_xor_f16(a, b);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] ^ inputs_[k + xnn_simd_size_f16]);
}
}
TEST_F(F16SimdSCALARTest, ShiftLeft) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 1);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 1) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 2);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 2) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 3);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 3) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 4);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 4) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 5);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 5) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 6);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 6) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 7);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 7) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 8);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 8) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 9);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 9) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 10);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 10) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 11);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 11) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 12);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 12) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 13);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 13) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 14);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 14) & 0xFFFF);
}
}
{
const xnn_simd_f16_t res = xnn_sll_f16(a, 15);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], (inputs_[k] << 15) & 0xFFFF);
}
}
}
TEST_F(F16SimdSCALARTest, ShiftRight) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 1);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 1);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 2);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 2);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 3);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 3);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 4);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 4);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 5);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 5);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 6);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 6);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 7);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 7);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 8);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 8);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 9);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 9);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 10);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 10);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 11);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 11);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 12);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 12);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 13);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 13);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 14);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 14);
}
}
{
const xnn_simd_f16_t res = xnn_srl_f16(a, 15);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 15);
}
}
}
TEST_F(F16SimdSCALARTest, ShiftRightSigned) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
// Not using a loop since the `bits` parameter needs to be a compile-time
// constant, e.g. for `neon`.
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 1);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 1);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 2);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 2);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 3);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 3);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 4);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 4);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 5);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 5);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 6);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 6);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 7);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 7);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 8);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 8);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 9);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 9);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 10);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 10);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 11);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 11);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 12);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 12);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 13);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 13);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 14);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 14);
}
}
{
const xnn_simd_f16_t res = xnn_sra_f16(a, 15);
xnn_storeu_f16(output_.data(), res);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k], inputs_[k] >> 15);
}
}
}
TEST_F(F16SimdSCALARTest, CmpEq) {
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
if (rng_() & 1) {
inputs_[k + xnn_simd_size_f16] = inputs_[k];
}
}
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
const xnn_simd_f16_t res = xnn_cmpeq_f16(a, b);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_[k],
inputs_[k] == inputs_[k + xnn_simd_size_f16] ? 0xFFFF : 0);
}
}
TEST_F(F16SimdSCALARTest, GetExp) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
const xnn_simd_f16_t res = xnn_getexp_f16(a);
xnn_storeu_f16(output_.data(), res);
std::vector<float> output_f32 = ToFloat32(output_);
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k], std::logb(inputs_f32[k]));
}
}
TEST_F(F16SimdSCALARTest, StoreTail) {
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
std::vector<float> inputs_f32 = ToFloat32(inputs_);
for (size_t num_elements = 1; num_elements < xnn_simd_size_f16;
num_elements++) {
xnn_store_tail_f16(output_.data(), a, num_elements);
std::vector<float> output_f32 = ToFloat32(output_);
for (size_t k = 0; k < num_elements; k++) {
ASSERT_EQ(output_f32[k], inputs_f32[k]);
}
for (size_t k = num_elements; k < xnn_simd_size_f16; k++) {
ASSERT_EQ(output_f32[k], fp16_ieee_from_fp32_value(0.0f));
}
}
}
} // namespace xnnpack