158 lines
5.7 KiB
C++
158 lines
5.7 KiB
C++
// Copyright 2022 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "xnnpack.h"
|
|
#include "xnnpack/math.h"
|
|
#include "xnnpack/node-type.h"
|
|
#include "xnnpack/subgraph.h"
|
|
#include "replicable_random_device.h"
|
|
|
|
template <typename T> class GlobalSumPooling2DTest : public ::testing::Test {
|
|
protected:
|
|
GlobalSumPooling2DTest() {
|
|
shape_dist = std::uniform_int_distribution<size_t>(3, XNN_MAX_TENSOR_DIMS);
|
|
dim_dist = std::uniform_int_distribution<size_t>(1, 9);
|
|
f32dist = std::uniform_real_distribution<float>();
|
|
|
|
input_dims = RandomShape();
|
|
output_dims = input_dims;
|
|
output_dims[output_dims.size() - 3] = 1;
|
|
output_dims[output_dims.size() - 2] = 1;
|
|
input =
|
|
std::vector<T>(XNN_EXTRA_BYTES / sizeof(T) + NumElements(input_dims));
|
|
operator_output = std::vector<T>(NumElements(output_dims));
|
|
subgraph_output = std::vector<T>(operator_output.size());
|
|
batch_size = 1;
|
|
for (size_t i = 0; i < input_dims.size() - 3; i++) {
|
|
batch_size *= input_dims[i];
|
|
}
|
|
input_width =
|
|
input_dims[input_dims.size() - 3] * input_dims[input_dims.size() - 2];
|
|
channels = input_dims[input_dims.size() - 1];
|
|
}
|
|
|
|
std::vector<size_t> RandomShape() {
|
|
std::vector<size_t> dims(shape_dist(rng));
|
|
std::generate(dims.begin(), dims.end(), [&] { return dim_dist(rng); });
|
|
return dims;
|
|
}
|
|
|
|
size_t NumElements(std::vector<size_t>& dims)
|
|
{
|
|
return std::accumulate(
|
|
dims.begin(), dims.end(), size_t(1), std::multiplies<size_t>());
|
|
}
|
|
|
|
xnnpack::ReplicableRandomDevice rng;
|
|
std::uniform_int_distribution<size_t> shape_dist;
|
|
std::uniform_int_distribution<size_t> dim_dist;
|
|
std::uniform_real_distribution<float> f32dist;
|
|
|
|
float output_min = -std::numeric_limits<float>::infinity();
|
|
float output_max = std::numeric_limits<float>::infinity();
|
|
size_t batch_size;
|
|
size_t input_width;
|
|
size_t channels;
|
|
|
|
std::vector<size_t> input_dims;
|
|
std::vector<size_t> output_dims;
|
|
|
|
std::vector<T> input;
|
|
std::vector<T> operator_output;
|
|
std::vector<T> subgraph_output;
|
|
};
|
|
|
|
using GlobalSumPooling2DTestF16 = GlobalSumPooling2DTest<xnn_float16>;
|
|
using GlobalSumPooling2DTestF32 = GlobalSumPooling2DTest<float>;
|
|
|
|
TEST_F(GlobalSumPooling2DTestF16, define)
|
|
{
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
|
|
uint32_t input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp16, input_dims.size(), input_dims.data(), nullptr,
|
|
/*external_id=*/0, /*flags=*/0, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
uint32_t output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(), nullptr,
|
|
/*external_id=*/1, /*flags=*/0, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
ASSERT_EQ(
|
|
xnn_status_success,
|
|
xnn_define_global_sum_pooling_2d(subgraph, output_min, output_max, input_id, output_id, /*flags=*/0));
|
|
|
|
ASSERT_EQ(subgraph->num_nodes, 1);
|
|
const struct xnn_node* node = &subgraph->nodes[0];
|
|
ASSERT_EQ(node->type, xnn_node_type_static_sum);
|
|
ASSERT_EQ(node->num_inputs, 1);
|
|
ASSERT_EQ(node->inputs[0], input_id);
|
|
ASSERT_EQ(node->num_outputs, 1);
|
|
ASSERT_EQ(node->outputs[0], output_id);
|
|
ASSERT_EQ(node->params.reduce.num_reduction_axes, 2);
|
|
ASSERT_EQ(node->params.reduce.reduction_axes[0], input_dims.size() - 3);
|
|
ASSERT_EQ(node->params.reduce.reduction_axes[1], input_dims.size() - 2);
|
|
ASSERT_EQ(node->flags, 0);
|
|
}
|
|
|
|
TEST_F(GlobalSumPooling2DTestF32, define)
|
|
{
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
|
|
|
|
xnn_subgraph_t subgraph = nullptr;
|
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph));
|
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
|
|
|
|
uint32_t input_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr,
|
|
/*external_id=*/0, /*flags=*/0, &input_id));
|
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
|
|
|
|
uint32_t output_id = XNN_INVALID_NODE_ID;
|
|
ASSERT_EQ(
|
|
xnn_status_success, xnn_define_tensor_value(
|
|
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
|
|
/*external_id=*/1, /*flags=*/0, &output_id));
|
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
|
|
|
|
ASSERT_EQ(
|
|
xnn_status_success,
|
|
xnn_define_global_sum_pooling_2d(subgraph, output_min, output_max, input_id, output_id, /*flags=*/0));
|
|
|
|
ASSERT_EQ(subgraph->num_nodes, 1);
|
|
const struct xnn_node* node = &subgraph->nodes[0];
|
|
ASSERT_EQ(node->type, xnn_node_type_static_sum);
|
|
ASSERT_EQ(node->num_inputs, 1);
|
|
ASSERT_EQ(node->inputs[0], input_id);
|
|
ASSERT_EQ(node->num_outputs, 1);
|
|
ASSERT_EQ(node->outputs[0], output_id);
|
|
ASSERT_EQ(node->params.reduce.num_reduction_axes, 2);
|
|
ASSERT_EQ(node->params.reduce.reduction_axes[0], input_dims.size() - 3);
|
|
ASSERT_EQ(node->params.reduce.reduction_axes[1], input_dims.size() - 2);
|
|
ASSERT_EQ(node->flags, 0);
|
|
}
|