sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/rdsum-microkernel-tester.h

299 lines
9.4 KiB
C++

// Copyright 2024 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/buffer.h"
#include "xnnpack/math.h"
#include "xnnpack/microfnptr.h"
#include "xnnpack/microparams.h"
#include "xnnpack/requantization.h"
#include "replicable_random_device.h"
class RDSumMicrokernelTester {
public:
RDSumMicrokernelTester& rows(size_t rows) {
assert(rows != 0);
this->rows_ = rows;
return *this;
}
size_t rows() const {
return this->rows_;
}
RDSumMicrokernelTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
size_t channels() const {
return this->channels_;
}
RDSumMicrokernelTester& channel_tile(size_t channel_tile) {
assert(channel_tile != 0);
this->channel_tile_ = channel_tile;
return *this;
}
size_t channel_tile() const {
return this->channel_tile_;
}
RDSumMicrokernelTester& input_stride(size_t input_stride) {
assert(input_stride != 0);
this->input_stride_ = input_stride;
return *this;
}
size_t input_stride() const {
if (this->input_stride_ == 0) {
return channels();
} else {
assert(this->input_stride_ >= channels());
return this->input_stride_;
}
}
RDSumMicrokernelTester& input_scale(float input_scale) {
assert(input_scale > 0.0f);
assert(std::isnormal(input_scale));
this->input_scale_ = input_scale;
return *this;
}
float input_scale() const {
return this->input_scale_;
}
RDSumMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
this->input_zero_point_ = input_zero_point;
return *this;
}
uint8_t input_zero_point() const {
return this->input_zero_point_;
}
RDSumMicrokernelTester& output_scale(float output_scale) {
assert(output_scale > 0.0f);
assert(std::isnormal(output_scale));
this->output_scale_ = output_scale;
return *this;
}
float output_scale() const {
return this->output_scale_;
}
RDSumMicrokernelTester& output_zero_point(uint8_t output_zero_point) {
this->output_zero_point_ = output_zero_point;
return *this;
}
uint8_t output_zero_point() const {
return this->output_zero_point_;
}
RDSumMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
size_t iterations() const {
return this->iterations_;
}
uint8_t qmin() const {
return this->qmin_;
}
uint8_t qmax() const {
return this->qmax_;
}
void Test(xnn_qs8_rdsum_ukernel_fn rdsum,
xnn_init_qs8_rsum_params_fn init_params = nullptr) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<int32_t> i8dist(
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max());
xnnpack::Buffer<int8_t> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES);
xnnpack::Buffer<int8_t> zero(channels() + XNN_EXTRA_BYTES, 0);
xnnpack::Buffer<int32_t> output(channels());
xnnpack::Buffer<int32_t> output_ref(channels());
{//for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); });
std::generate(output.begin(), output.end(), [&]() { return i8dist(rng); });
// TODO: WHY?!
std::copy(output.begin(), output.end(), output_ref.begin());
// Compute reference results, without clamping.
for (size_t c = 0; c < channels(); c++) {
for (size_t n = 0; n < rows(); n++) {
output_ref[c] += int32_t(input[n * input_stride() + c]);
}
}
// Prepare parameters.
struct xnn_qs8_rsum_params params;
if (init_params) {
init_params(&params);
}
// Call optimized micro-kernel.
rdsum(rows(), channels(), input.data(), input_stride(), zero.data(), output.data(), &params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
EXPECT_EQ(output[c], output_ref[c])
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
}
}
}
void Test(xnn_qu8_rdsum_ukernel_fn rdsum,
xnn_init_qs8_rsum_params_fn init_params = nullptr) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
xnnpack::Buffer<uint8_t> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES);
xnnpack::Buffer<uint8_t> zero(channels() + XNN_EXTRA_BYTES, 0);
xnnpack::Buffer<uint32_t> output(channels());
xnnpack::Buffer<uint32_t> output_ref(channels());
{
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
std::generate(output.begin(), output.end(), [&]() { return u8dist(rng); });
// TODO: WHY?!
std::copy(output.begin(), output.end(), output_ref.begin());
// Compute reference results, without clamping.
for (size_t c = 0; c < channels(); c++) {
for (size_t n = 0; n < rows(); n++) {
output_ref[c] += uint32_t(input[n * input_stride() + c]);
}
}
// Prepare parameters.
struct xnn_qs8_rsum_params params;
if (init_params) {
init_params(&params);
}
// Call optimized micro-kernel.
rdsum(rows(), channels(), input.data(), input_stride(), zero.data(), output.data(), &params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
EXPECT_EQ(output[c], output_ref[c])
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
}
}
}
void Test(xnn_f16_f32acc_rdsum_ukernel_fn rdsum, xnn_init_f16_f32acc_scale_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist(0.01f, 1.0f);
xnnpack::Buffer<xnn_float16> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(xnn_float16));
xnnpack::Buffer<xnn_float16> zero(channels() + XNN_EXTRA_BYTES / sizeof(xnn_float16), 0);
xnnpack::Buffer<float> output(channels());
xnnpack::Buffer<float> output_ref(channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(output.begin(), output.end(), [&]() { return f32dist(rng); });
// TODO: WHY?!
std::copy(output.begin(), output.end(), output_ref.begin());
// Compute reference results, without clamping.
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t n = 0; n < rows(); n++) {
acc += input[n * input_stride() + c];
}
output_ref[c] += acc / float(rows());
}
// Prepare parameters.
struct xnn_f16_f32acc_scale_params params;
init_params(&params, 1.f / float(rows()));
// Call optimized micro-kernel.
rdsum(rows(), channels(), input.data(), input_stride() * sizeof(xnn_float16), zero.data(), output.data(), &params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
EXPECT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-5f)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
}
}
}
void Test(xnn_f32_rdsum_ukernel_fn rdsum, xnn_init_f32_scale_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
xnnpack::Buffer<float> input((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
xnnpack::Buffer<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float), 0.0f);
xnnpack::Buffer<float> output(channels());
xnnpack::Buffer<float> output_ref(channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(output.begin(), output.end(), [&]() { return f32dist(rng); });
// TODO: WHY?!
std::copy(output.begin(), output.end(), output_ref.begin());
// Compute reference results.
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t n = 0; n < rows(); n++) {
acc += input[n * input_stride() + c];
}
output_ref[c] += acc / static_cast<float>(rows());
}
// Prepare parameters.
struct xnn_f32_scale_params params;
init_params(&params, 1.0f / static_cast<float>(rows()));
// Call optimized micro-kernel.
rdsum(rows(), channels(), input.data(), input_stride() * sizeof(float), zero.data(), output.data(), &params);
// Verify results.
for (size_t c = 0; c < channels(); c++) {
EXPECT_NEAR(output[c], output_ref[c], std::abs(output_ref[c]) * 1.0e-6f)
<< "at position " << c << ", rows = " << rows() << ", channels = " << channels();
}
}
}
private:
size_t rows_{1};
size_t channels_{1};
size_t channel_tile_{1};
size_t input_stride_{0};
float input_scale_{1.25f};
float output_scale_{0.75f};
uint8_t input_zero_point_{121};
uint8_t output_zero_point_{133};
size_t iterations_{3};
uint8_t qmin_{0};
uint8_t qmax_{255};
};