sglang_v0.5.2/pytorch_2.8.0/third_party/fbgemm/bench/EmbeddingSpMDMNBit2Benchmar...

543 lines
17 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#if defined(__x86_64__) || defined(__i386__) || \
(defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)))
#include <immintrin.h>
#endif
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <random>
#include <set>
#include <utility>
#include <vector>
#include "./BenchUtils.h"
#include "fbgemm/Fbgemm.h"
#include "fbgemm/FbgemmConvert.h"
#include "src/EmbeddingSpMDMAutovec.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
namespace {
enum KernelType {
REF = 1,
AUTOVEC = 2,
ASMJIT = 3,
};
struct BenchmarkSpec {
int bit_rate;
int batch_size;
int num_rows;
int emb_dims;
int avg_length;
int indices_bits;
int lengths_sum;
bool has_weight;
bool cache_flushed;
bool prefetch;
// Constructor that takes parameters and fills in all the fields in the struct
BenchmarkSpec(
int bit_rate,
int batch_size,
int num_rows,
int emb_dims,
int avg_length,
int indices_bits,
int lengths_sum,
bool has_weight,
bool cache_flushed,
bool prefetch)
: bit_rate(bit_rate),
batch_size(batch_size),
num_rows(num_rows),
emb_dims(emb_dims),
avg_length(avg_length),
indices_bits(indices_bits),
lengths_sum(lengths_sum),
has_weight(has_weight),
cache_flushed(cache_flushed),
prefetch(prefetch) {}
// Overload the equal operator (==) to compare equality of two BenchmarkSpec
// objects by comparing equality of each member
bool operator==(const BenchmarkSpec& that) const {
return bit_rate == that.bit_rate && batch_size == that.batch_size &&
num_rows == that.num_rows && emb_dims == that.emb_dims &&
avg_length == that.avg_length && indices_bits == that.indices_bits &&
lengths_sum == that.lengths_sum && has_weight == that.has_weight &&
cache_flushed == that.cache_flushed && prefetch == that.prefetch;
}
};
struct BenchmarkResult {
float ref_bw;
float ref_eff_bw;
float ref_time;
float asmjit_bw;
float asmjit_eff_bw;
float asmjit_time;
float autovec_bw;
float autovec_eff_bw;
float autovec_time;
BenchmarkResult()
: ref_bw(0.0),
ref_eff_bw(0.0),
ref_time(0.0),
asmjit_bw(0.0),
asmjit_eff_bw(0.0),
asmjit_time(0.0),
autovec_bw(0.0),
autovec_eff_bw(0.0),
autovec_time(0.0) {}
void set_ref_result(float bw, float eff_bw, float time) {
ref_bw = bw;
ref_eff_bw = eff_bw;
ref_time = time;
}
void set_asmjit_result(float bw, float eff_bw, float time) {
asmjit_bw = bw;
asmjit_eff_bw = eff_bw;
asmjit_time = time;
}
void set_autovec_result(float bw, float eff_bw, float time) {
autovec_bw = bw;
autovec_eff_bw = eff_bw;
autovec_time = time;
}
};
} // namespace
static std::vector<std::pair<BenchmarkSpec, BenchmarkResult>> benchmarks;
// Return the reference to the BenchmarkResult associated with the
// BenchmarkSpec being queried. If the benchmark spec is recorded,
// return reference to the benchmark result object on the record;
// if the spec is not found, create a new record of the spec and a
// blank benchmark result object.
static BenchmarkResult& find_benchmark_record(const BenchmarkSpec& spec) {
for (int i = benchmarks.size() - 1; i >= 0; --i) {
if (benchmarks[i].first == spec) {
return benchmarks[i].second;
}
}
benchmarks.push_back(std::make_pair(spec, BenchmarkResult()));
return benchmarks.back().second;
}
static void print_benchmark_results() {
std::cout
<< "bit_rate, batch_size, num_rows, emb_dim, avg_length, "
<< "indices_bits, lengths_sum, has_weight, cache_flushed, prefetch, "
<< "asmjit b/w (GB/s), asmjit effective b/w (GB/s), asmjit time, "
<< "autovec b/w (GB/s), autovec effective b/w (GB/s), autovec time, "
<< "ref b/w (GB/s), ref effective b/w (GB/s), ref time, "
<< "asmjit speedup ratio, autovec speedup ratio" << std::endl;
for (size_t i = 0; i < benchmarks.size(); ++i) {
BenchmarkSpec& spec = benchmarks[i].first;
BenchmarkResult& res = benchmarks[i].second;
float asmjit_speedup = res.ref_bw > 0.0 ? res.asmjit_bw / res.ref_bw : 0;
float autovec_speedup = res.ref_bw > 0.0 ? res.autovec_bw / res.ref_bw : 0;
std::cout << spec.bit_rate << ", " << spec.batch_size << ", "
<< spec.num_rows << ", " << spec.emb_dims << ", "
<< spec.avg_length << ", " << spec.indices_bits << ", "
<< spec.lengths_sum << ", " << spec.has_weight << ", "
<< spec.cache_flushed << ", " << spec.prefetch << ", "
<< res.asmjit_bw << ", " << res.asmjit_eff_bw << ", "
<< res.asmjit_time << ", " << res.autovec_bw << ", "
<< res.autovec_eff_bw << ", " << res.autovec_time << ", "
<< res.ref_bw << ", " << res.ref_eff_bw << ", " << res.ref_time
<< ", " << asmjit_speedup << ", " << autovec_speedup << std::endl;
}
}
void print_fused_table(int rows, int embedding_dim, const uint8_t* table) {
for (int i = 0; i < rows; i++) {
std::cout << "row: " << i << " : " << std::endl;
for (int ii = 0; ii < embedding_dim; ii++) {
std::cout << (int)table[i * (embedding_dim + 2 * sizeof(float)) + ii]
<< ",";
}
std::cout << std::endl;
}
}
static vector<vector<int>> GetInputs_() {
vector<vector<int>> input_dims = {
// batch size, number of rows of table, emb dim , avg lengthl
// TODO: Add more inputs
// Use these -- but they are slow.
{10, 4000000, 32, 100},
{10, 4000000, 64, 100},
{10, 4000000, 128, 100},
{10, 4000000, 256, 100},
// Use these for debugging
// {2, 16, 128, 10},
// {10, 4000, 128, 100},
// {10, 4000, 128, 100},
// {10, 4000, 128, 100},
};
return input_dims;
}
int run_benchmark(
int bit_rate,
int batch_size,
int num_rows,
int embedding_dim,
int average_len,
bool normalize_by_lengths,
bool use_32_bit_indices = false,
bool prefetch = false,
enum KernelType kern_type = REF) {
// Create embedding table
int num_elem_per_byte = 8 / bit_rate;
int fused_embedding_dim =
(embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte +
2 * sizeof(float16);
default_random_engine generator;
normal_distribution<float> embedding_distribution;
vector<uint8_t> fused_embedding_table(num_rows * fused_embedding_dim);
for (int i = 0; i < num_rows; i++) {
for (int ii = 0;
ii < (embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte;
ii++) {
fused_embedding_table[i * fused_embedding_dim + ii] = 2;
}
float16* scale_bias = reinterpret_cast<float16*>(
&fused_embedding_table[i * fused_embedding_dim] +
(embedding_dim + num_elem_per_byte - 1) / num_elem_per_byte);
float scale = 2.0f;
float bias = 1.0f;
FloatToFloat16_ref(&scale, scale_bias, 1, true /* clip */);
FloatToFloat16_ref(&bias, scale_bias + 1, 1, true /* clip */);
}
// Generate lengths
uniform_int_distribution<int> length_distribution(
1, std::min(2 * average_len + 1, num_rows));
vector<int> offsets(batch_size + 1);
offsets[0] = 0;
for (int i = 0; i < batch_size; ++i) {
offsets[i + 1] = offsets[i] + length_distribution(generator);
}
// Compute the number of indices
int lengths_sum = offsets[batch_size];
// Generate indices
vector<int64_t> indices;
vector<int32_t> indices_32;
vector<int> container(num_rows);
map<int64_t, set<int>> dedup_map; // index -> set(output index)
// please note we generate unique indices
for (int i = 0; i < batch_size; ++i) {
iota(container.begin(), container.end(), 0);
shuffle(container.begin(), container.end(), generator);
copy(
container.begin(),
container.begin() + (offsets[i + 1] - offsets[i]),
back_inserter(indices));
}
copy(begin(indices), end(indices), back_inserter(indices_32));
// Generate weights
vector<float> weights(lengths_sum);
for (int i = 0; i < lengths_sum; ++i) {
weights[i] = embedding_distribution(generator);
}
vector<float> output_sls(batch_size * embedding_dim);
vector<float> output_slws(output_sls.size());
constexpr int NUM_WARMUP = 10;
constexpr int NUM_ITER = 100;
// Only counts the number of bytes for reading embedding table and ignore
// others. Should be good enough as long as embdding_dim is big enough.
double bytes = lengths_sum * fused_embedding_dim;
constexpr int CACHE_LINE_LEN = 64;
double bytes_padded = lengths_sum * CACHE_LINE_LEN *
static_cast<int>((fused_embedding_dim + CACHE_LINE_LEN - 1) /
CACHE_LINE_LEN);
for (bool has_weight : {false, true}) {
bool success = false;
auto kernel_32 = GenerateEmbeddingSpMDMNBit<int32_t>(
bit_rate,
embedding_dim,
has_weight,
normalize_by_lengths,
prefetch ? 16 : 0);
auto kernel_64 = GenerateEmbeddingSpMDMNBit<int64_t>(
bit_rate,
embedding_dim,
has_weight,
normalize_by_lengths,
prefetch ? 16 : 0);
#ifdef FBGEMM_AUTOVEC_AVAILABLE
auto kernel_32_autovec = GenerateEmbeddingSpMDMNBitWithStrides_autovec<
/*IndexType=*/int32_t,
/*OffsetType=*/int32_t,
/*OutType=*/float>(
bit_rate,
embedding_dim,
has_weight,
normalize_by_lengths,
prefetch ? 16 : 0,
/*is_weight_positional=*/false,
/*use_offsets=*/true,
/*output_stride=*/-1,
/*input_stride=*/-1,
/*scale_bias_last=*/true,
/*is_bf16_out=*/false,
/*no_bag=*/false,
/*output_bit_rate=*/-1);
auto kernel_64_autovec = GenerateEmbeddingSpMDMNBitWithStrides_autovec<
/*IndexType=*/int64_t,
/*OffsetType=*/int32_t,
/*OutType=*/float>(
bit_rate,
embedding_dim,
has_weight,
normalize_by_lengths,
prefetch ? 16 : 0,
/*is_weight_positional=*/false,
/*use_offsets=*/true,
/*output_stride=*/-1,
/*input_stride=*/-1,
/*scale_bias_last=*/true,
/*is_bf16_out=*/false,
/*no_bag=*/false,
/*output_bit_rate=*/-1);
#endif
vector<float>& output = has_weight ? output_slws : output_sls;
for (bool flush_cache : {false, true}) {
BenchmarkSpec spec(
bit_rate,
batch_size,
num_rows,
embedding_dim,
average_len,
use_32_bit_indices ? 32 : 64,
lengths_sum,
has_weight,
flush_cache,
prefetch);
if (kern_type == REF) {
// Reference implementation
double t_ref = measureWithWarmup(
[&]() {
if (use_32_bit_indices) {
success = EmbeddingSpMDMNBit_ref(
bit_rate,
embedding_dim,
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices_32.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
normalize_by_lengths,
output.data());
} else {
success = EmbeddingSpMDMNBit_ref(
bit_rate,
embedding_dim,
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
normalize_by_lengths,
output.data());
}
},
NUM_WARMUP,
NUM_ITER,
[&]() {
if (flush_cache) {
cache_evict(fused_embedding_table);
cache_evict(indices);
cache_evict(indices_32);
cache_evict(offsets);
cache_evict(weights);
cache_evict(output);
}
});
find_benchmark_record(spec).set_ref_result(
bytes / 1e9 / t_ref, bytes_padded / 1e9 / t_ref, t_ref);
} else if (kern_type == AUTOVEC) {
#ifdef FBGEMM_AUTOVEC_AVAILABLE
// Auto-vectorization implementation
double t_autovec = measureWithWarmup(
[&]() {
if (use_32_bit_indices) {
success = kernel_32_autovec(
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices_32.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data());
} else {
success = kernel_64_autovec(
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data());
}
},
NUM_WARMUP,
NUM_ITER,
[&]() {
if (flush_cache) {
cache_evict(fused_embedding_table);
cache_evict(indices);
cache_evict(indices_32);
cache_evict(offsets);
cache_evict(weights);
cache_evict(output);
}
});
find_benchmark_record(spec).set_autovec_result(
bytes / 1e9 / t_autovec, bytes_padded / 1e9 / t_autovec, t_autovec);
#endif
} else if (kern_type == ASMJIT) {
// Hand-written AVX2/AVX512 implementation
double t = measureWithWarmup(
[&]() {
if (use_32_bit_indices) {
success = kernel_32(
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices_32.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data());
} else {
success = kernel_64(
batch_size,
lengths_sum,
num_rows,
fused_embedding_table.data(),
indices.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data());
}
},
NUM_WARMUP,
NUM_ITER,
[&]() {
if (flush_cache) {
cache_evict(fused_embedding_table);
cache_evict(indices);
cache_evict(indices_32);
cache_evict(offsets);
cache_evict(weights);
cache_evict(output);
}
});
find_benchmark_record(spec).set_asmjit_result(
bytes / 1e9 / t, bytes_padded / 1e9 / t, t);
} else {
std::cerr << "Bad kern_type parameter: " << kern_type << std::endl;
assert(false);
}
if (!success) {
assert(false && "ERROR: benchmark did not succeed");
}
} // flush_cache
} // has_weight
return 0;
}
void sweep_benchmark(KernelType kern_type) {
int batch_size;
int num_rows;
int embedding_dim;
int average_len;
vector<vector<int>> inputs(GetInputs_());
for (int bit_rate : {4, 2}) {
for (auto& input : inputs) {
assert(input.size() > 3);
batch_size = input[0];
num_rows = input[1];
embedding_dim = input[2];
average_len = input[3];
auto run_benchmark_with_above_shape = [&](bool use_32_bit_indices,
bool prefetch) {
run_benchmark(
bit_rate,
batch_size,
num_rows,
embedding_dim,
average_len,
false, // normalize_by_lengths
use_32_bit_indices,
prefetch,
kern_type);
};
// 64 bit indices
run_benchmark_with_above_shape(false, false);
// 64 bit indices with prefetching
run_benchmark_with_above_shape(false, true);
// 32 bit indices
run_benchmark_with_above_shape(true, false);
// 32 bit indices with prefetching
run_benchmark_with_above_shape(true, true);
}
}
}
int main() {
sweep_benchmark(REF);
sweep_benchmark(AUTOVEC);
sweep_benchmark(ASMJIT);
print_benchmark_results();
return 0;
}