sglang_v0.5.2/pytorch_2.8.0/third_party/fbgemm/test/EmbeddingSpMDMTest.cc

986 lines
35 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <algorithm>
#include <numeric> // for accumulate and iota
#include <ostream>
#include <random>
#include <stdexcept>
#include <gtest/gtest.h>
#include "./EmbeddingSpMDMTestUtils.h"
#include "fbgemm/Fbgemm.h"
#include "fbgemm/FbgemmConvert.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
static vector<vector<int>> GetInputs_() {
vector<vector<int>> input_dims = {
// batch size, number of rows of table, emb dim , avg length
{1, 8, 8, 4},
{2, 8, 16, 4},
{10, 4000, 32, 100},
{100, 4000, 32, 100},
{10, 4000, 64, 100},
{10, 4000, 128, 100},
{4, 400, 256, 10},
{10, 4000, 48, 100},
{10, 4000, 40, 100},
{10, 4000, 56, 100},
{10, 4000, 1, 100},
{10, 4000, 4, 100},
// These were from C2 tests
{10, 40, 16, 10},
{10, 40, 85, 10},
{10, 40, 8, 10},
{10, 40, 96, 10},
{10, 40, 163, 10},
};
return input_dims;
}
namespace {
class EmbeddingSpMDMTest : public testing::TestWithParam<tuple<
int,
EmbeddingSpMDMWeightChoice,
EmbeddingSpMDMCornerCase,
EmbeddingSpMDMInputDtypeChoice,
EmbeddingSpMDMOutputDtypeChoice>> {};
class rowwiseSparseEmbeddingSpMDMTest
: public testing::TestWithParam<
tuple<int, EmbeddingSpMDMWeightChoice, EmbeddingSpMDMCornerCase>> {};
class IndexRemapTest
: public testing::TestWithParam<tuple<int, int, int, bool, bool>> {};
} // namespace
vector<int> prefetch_distances = {0, 16, 1000000};
INSTANTIATE_TEST_CASE_P(
InstantiationName,
EmbeddingSpMDMTest,
::testing::Combine(
::testing::ValuesIn(prefetch_distances),
::testing::Values(
UNWEIGHTED,
WEIGHTED,
POSITIONAL_WEIGHTED), // use_weight
::testing::Values(
NONE,
EMPTY_INDICES,
OUT_OF_BOUND_INDICES,
UNMATCHED_NUM_INDICES_AND_LENGTHS_SUM),
::testing::Values(FLOAT, FLOAT16, BFLOAT16),
::testing::Values(FLOAT, FLOAT16, BFLOAT16)));
INSTANTIATE_TEST_CASE_P(
InstantiationName,
rowwiseSparseEmbeddingSpMDMTest,
::testing::Combine(
::testing::ValuesIn(prefetch_distances),
::testing::Values(
UNWEIGHTED,
WEIGHTED,
POSITIONAL_WEIGHTED), // use_weight
::testing::Values(
NONE,
EMPTY_INDICES,
OUT_OF_BOUND_INDICES,
UNMATCHED_NUM_INDICES_AND_LENGTHS_SUM)));
INSTANTIATE_TEST_CASE_P(
InstantiationName,
IndexRemapTest,
::testing::Combine(
::testing::ValuesIn({1, 2, 5, 10}), // batch size
::testing::ValuesIn({1, 50, 100, 1000}), // number of rows
::testing::ValuesIn({1, 5, 16}), // avg len
::testing::Bool(), // is index 64 bit?
::testing::Bool())); // per sample weights?
TEST_P(EmbeddingSpMDMTest, basicTest) {
vector<vector<int>> inputs(GetInputs_());
random_device r;
default_random_engine generator(r());
uniform_int_distribution<> bool_dist(0, 1);
bool isIndex64b = bool_dist(generator);
bool isOffset64b = bool_dist(generator);
bool normalize_by_lengths = bool_dist(generator);
bool use_offsets = bool_dist(generator);
bool use_output_input_stride = bool_dist(generator);
bool test_thread_local = bool_dist(generator);
int prefetch;
EmbeddingSpMDMWeightChoice weight_choice;
EmbeddingSpMDMCornerCase corner_case;
EmbeddingSpMDMInputDtypeChoice in_type;
EmbeddingSpMDMOutputDtypeChoice out_type;
tie(prefetch, weight_choice, corner_case, in_type, out_type) = GetParam();
bool is_wt_positional = weight_choice == POSITIONAL_WEIGHTED;
bool use_weight = weight_choice != UNWEIGHTED;
bool isFp16 = in_type == FLOAT16;
bool isBf16 = in_type == BFLOAT16;
bool is_output_float = (out_type == FLOAT);
bool is_output_bfloat16 = (out_type == BFLOAT16);
if (corner_case != NONE || is_wt_positional) {
// Check corner case only for subset of tests.
if (isFp16 || normalize_by_lengths || use_output_input_stride ||
!is_output_float || test_thread_local) {
return;
}
}
if (is_wt_positional && !use_weight) {
// weight positional only makes sense when use_weight is true
return;
}
#if defined(__APPLE__) || defined(_WIN32)
if (in_type == BFLOAT16 && out_type == FLOAT) {
return;
}
#endif
for (auto input : inputs) {
int batch_size = input[0];
int num_rows = input[1];
int embedding_dim = input[2];
int average_len = input[3];
int output_stride = use_output_input_stride ? embedding_dim * 2 + 3 : -1;
int input_stride = use_output_input_stride ? embedding_dim * 2 + 3 : -1;
// Create embedding table
vector<float> embedding_table(
num_rows * (use_output_input_stride ? input_stride : embedding_dim));
normal_distribution<float> embedding_distribution;
for (int i = 0; i < num_rows; ++i) {
for (int j = 0; j < embedding_dim; ++j) {
embedding_table
[i * (use_output_input_stride ? input_stride : embedding_dim) + j] =
embedding_distribution(generator);
}
}
vector<float16> embedding_table_fp16;
if (isFp16) {
embedding_table_fp16.resize(embedding_table.size());
FloatToFloat16_simd(
embedding_table.data(),
embedding_table_fp16.data(),
embedding_table.size());
}
vector<bfloat16> embedding_table_bf16;
if (isBf16) {
embedding_table_bf16.resize(embedding_table.size());
FloatToBfloat16_simd(
embedding_table.data(),
embedding_table_bf16.data(),
embedding_table.size());
}
vector<int64_t> lengths, offsets, indices;
vector<int32_t> lengths_32, offsets_32, indices_32;
vector<float> weights;
int lengths_sum = GenerateLengthsIndicesWeights(
lengths,
lengths_32,
offsets,
offsets_32,
indices,
indices_32,
weights,
batch_size,
num_rows,
average_len,
corner_case);
const int64_t* offsets_or_lengths =
(use_offsets ? offsets : lengths).data();
const int32_t* offsets_or_lengths_32 =
(use_offsets ? offsets_32 : lengths_32).data();
// Sentries at the end to make sure masking is done correctly not to write
// out of bounds.
constexpr int num_sentries = 10;
const float sentry_value = 1.0f;
int output_size_wo_sentries =
batch_size * (use_output_input_stride ? output_stride : embedding_dim);
vector<float> output_ref(output_size_wo_sentries + num_sentries);
vector<float> output(output_ref.size());
vector<float16> output_ref_fp16(output.size()), output_fp16(output.size());
vector<bfloat16> output_ref_bf16(output.size()), output_bf16(output.size());
for (size_t i = output_size_wo_sentries; i < output.size(); ++i) {
output_ref[i] = sentry_value;
output[i] = sentry_value;
output_ref_fp16[i] = cpu_float2half_rn(sentry_value);
output_fp16[i] = cpu_float2half_rn(sentry_value);
FloatToBfloat16_ref(&sentry_value, &output_ref_bf16[i], 1);
FloatToBfloat16_ref(&sentry_value, &output_bf16[i], 1);
}
bool success, success_ref;
#define TEST_BASE( \
table, \
indices, \
offsets_or_lengths, \
output_ref, \
output, \
InType, \
IndexType, \
OffsetType, \
OutType, \
THREAD_LOCAL) \
success_ref = EmbeddingSpMDM_ref( \
embedding_dim, \
batch_size, \
lengths_sum, \
num_rows, \
table.data(), \
corner_case == EMPTY_INDICES ? nullptr : indices.data(), \
offsets_or_lengths, \
use_weight ? weights.data() : nullptr, \
normalize_by_lengths, \
output_ref.data(), \
is_wt_positional, \
use_offsets, \
output_stride, \
input_stride, \
true, \
false, \
is_output_bfloat16, \
isBf16); \
\
auto kernel = GenerateEmbeddingSpMDMWithStrides< \
InType, \
IndexType, \
OffsetType, \
OutType, \
THREAD_LOCAL>( \
embedding_dim, \
use_weight, \
normalize_by_lengths, \
prefetch, \
is_wt_positional, \
use_offsets, \
output_stride, \
input_stride, \
true, \
false, \
is_output_bfloat16, \
isBf16); \
success = kernel( \
batch_size, \
lengths_sum, \
num_rows, \
table.data(), \
corner_case == EMPTY_INDICES ? nullptr : indices.data(), \
offsets_or_lengths, \
use_weight ? weights.data() : nullptr, \
output.data());
#define TEST_THREAD_LOCAL( \
table, \
indices, \
offsets_or_lengths, \
output_ref, \
output, \
InType, \
IndexType, \
OffsetType, \
OutType) \
if (test_thread_local) { \
TEST_BASE( \
table, \
indices, \
offsets_or_lengths, \
output_ref, \
output, \
InType, \
IndexType, \
OffsetType, \
OutType, \
true); \
} else { \
TEST_BASE( \
table, \
indices, \
offsets_or_lengths, \
output_ref, \
output, \
InType, \
IndexType, \
OffsetType, \
OutType, \
false); \
}
#define TEST_OUT_TYPE( \
table, indices, offsets_or_lengths, InType, IndexType, OffsetType) \
if (is_output_float) { \
TEST_THREAD_LOCAL( \
table, \
indices, \
offsets_or_lengths, \
output_ref, \
output, \
InType, \
IndexType, \
OffsetType, \
float); \
} else if (is_output_bfloat16) { \
TEST_THREAD_LOCAL( \
table, \
indices, \
offsets_or_lengths, \
output_ref_bf16, \
output_bf16, \
InType, \
IndexType, \
OffsetType, \
bfloat16); \
} else { \
TEST_THREAD_LOCAL( \
table, \
indices, \
offsets_or_lengths, \
output_ref_fp16, \
output_fp16, \
InType, \
IndexType, \
OffsetType, \
float16); \
}
#define TEST_OFFSET_TYPE(table, indices, InType, IndexType) \
if (isOffset64b) { \
TEST_OUT_TYPE( \
table, indices, offsets_or_lengths, InType, IndexType, int64_t); \
} else { \
TEST_OUT_TYPE( \
table, indices, offsets_or_lengths_32, InType, IndexType, int32_t); \
}
#define TEST_INDEX_TYPE(table, InType) \
if (isIndex64b) { \
TEST_OFFSET_TYPE(table, indices, InType, int64_t); \
} else { \
TEST_OFFSET_TYPE(table, indices_32, InType, int32_t); \
}
if (isFp16) {
TEST_INDEX_TYPE(embedding_table_fp16, float16);
} else if (isBf16) {
TEST_INDEX_TYPE(embedding_table_bf16, bfloat16);
} else {
TEST_INDEX_TYPE(embedding_table, float);
}
#undef TEST_INDEX_TYPE
#undef TEST_OFFSET_TYPE
#undef TEST_OUT_TYPE
#undef TEST_THREAD_LOCAL
#undef TEST_BASE
// Check correctness
EXPECT_EQ(success, success_ref)
<< "Reference and JIT impl did not both succeed";
if (corner_case == OUT_OF_BOUND_INDICES ||
corner_case == UNMATCHED_NUM_INDICES_AND_LENGTHS_SUM) {
EXPECT_EQ(success, false);
}
auto get_actual = [&](int offset) {
if (is_output_float)
return output[offset];
else if (is_output_bfloat16) {
float v;
Bfloat16ToFloat_ref(&output_bf16[offset], &v, 1);
return v;
} else
return cpu_half2float(output_fp16[offset]);
};
auto get_expected = [&](int offset) {
if (is_output_float)
return output_ref[offset];
else if (is_output_bfloat16) {
float v;
Bfloat16ToFloat_ref(&output_ref_bf16[offset], &v, 1);
return v;
} else
return cpu_half2float(output_ref_fp16[offset]);
};
if (success) {
for (int i = 0; i < batch_size; ++i) {
for (int j = 0; j < embedding_dim; ++j) {
int offset =
i * (use_output_input_stride ? output_stride : embedding_dim) + j;
float actual = get_actual(offset);
float expected = get_expected(offset);
EXPECT_EQ(actual, expected)
<< "results differ at (" << i << ") reference: " << expected
<< ", FBGEMM: " << actual << " emb dim :" << embedding_dim;
}
}
for (int offset = output_size_wo_sentries;
offset < output_size_wo_sentries + num_sentries;
++offset) {
float actual = get_actual(offset);
float expected = get_expected(offset);
EXPECT_EQ(actual, expected)
<< "results differ at (" << offset << ") reference: " << expected
<< ", FBGEMM: " << actual << " emb dim :" << embedding_dim;
}
}
} // end for input
}
TEST_P(rowwiseSparseEmbeddingSpMDMTest, rowwiseSparseTest) {
vector<vector<int>> inputs(GetInputs_());
random_device r;
default_random_engine generator(r());
uniform_int_distribution<> bool_dist(0, 1);
bool isFp16 = bool_dist(generator);
bool isIndex64b = bool_dist(generator);
bool isOffset64b = bool_dist(generator);
bool normalize_by_lengths = bool_dist(generator);
bool use_offsets = bool_dist(generator);
bool is_output_float = bool_dist(generator);
int prefetch;
EmbeddingSpMDMWeightChoice weight_choice;
EmbeddingSpMDMCornerCase corner_case;
tie(prefetch, weight_choice, corner_case) = GetParam();
bool is_wt_positional = weight_choice == POSITIONAL_WEIGHTED;
bool use_weight = weight_choice != UNWEIGHTED;
if (!is_output_float) {
// Don't test is_output_float for row-wise sparse embedding spmdm
return;
}
constexpr float sparsity = 0.7;
for (auto input : inputs) {
int batch_size = input[0];
int num_rows = input[1];
int embedding_dim = input[2];
int average_len = input[3];
// Create mapping table for rowwise sparsity
vector<int32_t> mapping_table;
int num_compressed_rows =
CreateMappingTableForRowWiseSparsity(mapping_table, num_rows, sparsity);
// Create embedding table
vector<float> embedding_table(num_compressed_rows * embedding_dim);
normal_distribution<float> embedding_distribution;
for (size_t i = 0; i < embedding_table.size(); ++i) {
embedding_table[i] = embedding_distribution(generator);
}
vector<float16> embedding_table_fp16;
if (isFp16) {
embedding_table_fp16.resize(embedding_table.size());
FloatToFloat16_simd(
embedding_table.data(),
embedding_table_fp16.data(),
embedding_table.size());
}
vector<int64_t> lengths, offsets, indices;
vector<int32_t> lengths_32, offsets_32, indices_32;
vector<float> weights;
int lengths_sum = GenerateLengthsIndicesWeights(
lengths,
lengths_32,
offsets,
offsets_32,
indices,
indices_32,
weights,
batch_size,
num_rows,
average_len,
corner_case);
const int64_t* offsets_or_lengths =
(use_offsets ? offsets : lengths).data();
const int32_t* offsets_or_lengths_32 =
(use_offsets ? offsets_32 : lengths_32).data();
vector<float> output_sls_ref(batch_size * embedding_dim);
vector<float> output_slws_ref(output_sls_ref.size()),
output_sls(output_sls_ref.size()), output_slws(output_sls_ref.size());
vector<float>& output_ref = use_weight ? output_slws_ref : output_sls_ref;
vector<float>& output = use_weight ? output_slws : output_sls;
bool success, success_ref;
if (isOffset64b) {
if (isIndex64b) {
if (isFp16) {
success_ref = EmbeddingSpMDMRowWiseSparse_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
corner_case == EMPTY_INDICES ? nullptr : indices.data(),
mapping_table.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data(),
is_wt_positional,
use_offsets);
auto kernel =
GenerateEmbeddingSpMDMRowWiseSparse<float16, int64_t, int64_t>(
embedding_dim,
use_weight,
normalize_by_lengths,
prefetch,
is_wt_positional,
use_offsets);
success = kernel(
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
corner_case == EMPTY_INDICES ? nullptr : indices.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
} else {
success_ref = EmbeddingSpMDMRowWiseSparse_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
corner_case == EMPTY_INDICES ? nullptr : indices.data(),
mapping_table.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data(),
is_wt_positional,
use_offsets);
auto kernel =
GenerateEmbeddingSpMDMRowWiseSparse<float, int64_t, int64_t>(
embedding_dim,
use_weight,
normalize_by_lengths,
prefetch,
is_wt_positional,
use_offsets);
success = kernel(
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
corner_case == EMPTY_INDICES ? nullptr : indices.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
}
} else {
if (isFp16) {
success_ref = EmbeddingSpMDMRowWiseSparse_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
corner_case == EMPTY_INDICES ? nullptr : indices_32.data(),
mapping_table.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data(),
is_wt_positional,
use_offsets);
auto kernel =
GenerateEmbeddingSpMDMRowWiseSparse<float16, int32_t, int64_t>(
embedding_dim,
use_weight,
normalize_by_lengths,
prefetch,
is_wt_positional,
use_offsets);
success = kernel(
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
corner_case == EMPTY_INDICES ? nullptr : indices_32.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
} else {
success_ref = EmbeddingSpMDMRowWiseSparse_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
corner_case == EMPTY_INDICES ? nullptr : indices_32.data(),
mapping_table.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data(),
is_wt_positional,
use_offsets);
auto kernel =
GenerateEmbeddingSpMDMRowWiseSparse<float, int32_t, int64_t>(
embedding_dim,
use_weight,
normalize_by_lengths,
prefetch,
is_wt_positional,
use_offsets);
success = kernel(
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
corner_case == EMPTY_INDICES ? nullptr : indices_32.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
}
}
} else {
if (isIndex64b) {
if (isFp16) {
success_ref = EmbeddingSpMDMRowWiseSparse_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
corner_case == EMPTY_INDICES ? nullptr : indices.data(),
mapping_table.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data(),
is_wt_positional,
use_offsets);
auto kernel = GenerateEmbeddingSpMDMRowWiseSparse<float16, int64_t>(
embedding_dim,
use_weight,
normalize_by_lengths,
prefetch,
is_wt_positional,
use_offsets);
success = kernel(
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
corner_case == EMPTY_INDICES ? nullptr : indices.data(),
offsets_or_lengths_32,
use_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
} else {
success_ref = EmbeddingSpMDMRowWiseSparse_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
corner_case == EMPTY_INDICES ? nullptr : indices.data(),
mapping_table.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data(),
is_wt_positional,
use_offsets);
auto kernel = GenerateEmbeddingSpMDMRowWiseSparse<float, int64_t>(
embedding_dim,
use_weight,
normalize_by_lengths,
prefetch,
is_wt_positional,
use_offsets);
success = kernel(
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
corner_case == EMPTY_INDICES ? nullptr : indices.data(),
offsets_or_lengths_32,
use_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
}
} else {
if (isFp16) {
success_ref = EmbeddingSpMDMRowWiseSparse_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
corner_case == EMPTY_INDICES ? nullptr : indices_32.data(),
mapping_table.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data(),
is_wt_positional,
use_offsets);
auto kernel = GenerateEmbeddingSpMDMRowWiseSparse<float16, int32_t>(
embedding_dim,
use_weight,
normalize_by_lengths,
prefetch,
is_wt_positional,
use_offsets);
success = kernel(
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
corner_case == EMPTY_INDICES ? nullptr : indices_32.data(),
offsets_or_lengths_32,
use_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
} else {
success_ref = EmbeddingSpMDMRowWiseSparse_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
corner_case == EMPTY_INDICES ? nullptr : indices_32.data(),
mapping_table.data(),
offsets_or_lengths,
use_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data(),
is_wt_positional,
use_offsets);
auto kernel = GenerateEmbeddingSpMDMRowWiseSparse<float, int32_t>(
embedding_dim,
use_weight,
normalize_by_lengths,
prefetch,
is_wt_positional,
use_offsets);
success = kernel(
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
corner_case == EMPTY_INDICES ? nullptr : indices_32.data(),
offsets_or_lengths_32,
use_weight ? weights.data() : nullptr,
output.data(),
mapping_table.data());
}
}
}
// Check correctness
EXPECT_EQ(success, success_ref)
<< "Reference and JIT impl did not both succeed";
if (corner_case == OUT_OF_BOUND_INDICES ||
corner_case == UNMATCHED_NUM_INDICES_AND_LENGTHS_SUM) {
EXPECT_EQ(success, false);
}
if (success) {
for (size_t i = 0; i < output.size(); ++i) {
EXPECT_EQ(output[i], output_ref[i])
<< "results differ at (" << i << ") reference: " << output_ref[i]
<< ", FBGEMM: " << output[i] << " emb dim :" << embedding_dim;
}
}
} // end for input
}
TEST_P(IndexRemapTest, basicTest) {
int batch_size, num_rows, avg_len;
bool isIndex64b, per_sample_weights;
tie(batch_size, num_rows, avg_len, isIndex64b, per_sample_weights) =
GetParam();
constexpr float sparsity = 0.5;
vector<int64_t> lengths, offsets, indices;
vector<int32_t> lengths_32, offsets_32, indices_32;
vector<float> weights;
GenerateLengthsIndicesWeights(
lengths,
lengths_32,
offsets,
offsets_32,
indices,
indices_32,
weights,
batch_size,
num_rows,
avg_len, // average number of indices in a batch
EmbeddingSpMDMCornerCase::NONE);
// Create mapping table for rowwise sparsity
vector<int32_t> mapping_table;
CreateMappingTableForRowWiseSparsity(mapping_table, num_rows, sparsity);
// outputs
vector<int32_t> out_indices_32(indices_32.size(), 0);
vector<int32_t> out_offsets_32(offsets_32.size(), 0);
vector<float> out_weights(weights.size(), 0);
vector<int64_t> out_indices(indices.size(), 0);
vector<int64_t> out_offsets(offsets.size(), 0);
// reference outputs
vector<int32_t> out_indices_32_ref(indices_32.size(), 0);
vector<int32_t> out_offsets_32_ref(offsets_32.size(), 0);
vector<float> out_weights_ref(weights.size(), 0);
vector<int64_t> out_indices_ref(indices.size(), 0);
vector<int64_t> out_offsets_ref(offsets.size(), 0);
// number of elements in the offset array ( it's equal to batch_size + 1)
int offset_numel = offsets_32.size();
if (isIndex64b) {
if (per_sample_weights) {
compressed_indices_remap<int64_t>(
offset_numel,
indices.data(),
mapping_table.data(),
offsets.data(),
weights.data(),
out_indices.data(),
out_offsets.data(),
out_weights.data());
compressed_indices_remap_ref<int64_t>(
offset_numel,
indices.data(),
mapping_table.data(),
offsets.data(),
weights.data(),
out_indices_ref.data(),
out_offsets_ref.data(),
out_weights_ref.data());
} else {
compressed_indices_remap<int64_t>(
offset_numel,
indices.data(),
mapping_table.data(),
offsets.data(),
nullptr,
out_indices.data(),
out_offsets.data(),
nullptr);
compressed_indices_remap_ref<int64_t>(
offset_numel,
indices.data(),
mapping_table.data(),
offsets.data(),
nullptr,
out_indices_ref.data(),
out_offsets_ref.data(),
nullptr);
}
} else {
if (per_sample_weights) {
compressed_indices_remap<int32_t>(
offset_numel,
indices_32.data(),
mapping_table.data(),
offsets_32.data(),
weights.data(),
out_indices_32.data(),
out_offsets_32.data(),
out_weights.data());
compressed_indices_remap_ref<int32_t>(
offset_numel,
indices_32.data(),
mapping_table.data(),
offsets_32.data(),
weights.data(),
out_indices_32_ref.data(),
out_offsets_32_ref.data(),
out_weights_ref.data());
} else {
compressed_indices_remap<int32_t>(
offset_numel,
indices_32.data(),
mapping_table.data(),
offsets_32.data(),
nullptr,
out_indices_32.data(),
out_offsets_32.data(),
nullptr);
compressed_indices_remap_ref<int32_t>(
offset_numel,
indices_32.data(),
mapping_table.data(),
offsets_32.data(),
nullptr,
out_indices_32_ref.data(),
out_offsets_32_ref.data(),
nullptr);
}
}
if (isIndex64b) {
EXPECT_EQ(out_offsets, out_offsets_ref) << "offsets don't match";
for (int i = 0; i < out_offsets[offset_numel - 1]; ++i) {
EXPECT_EQ(out_indices[i], out_indices_ref[i])
<< "indices don't match at " << i;
}
} else {
EXPECT_EQ(out_offsets_32, out_offsets_32_ref) << "offsets don't match";
for (int i = 0; i < out_offsets_32[offset_numel - 1]; ++i) {
EXPECT_EQ(out_indices_32[i], out_indices_32_ref[i])
<< "indices don't match at " << i;
}
}
if (per_sample_weights) {
size_t len = isIndex64b ? out_offsets[offset_numel - 1]
: out_offsets_32[offset_numel - 1];
for (size_t i = 0; i < len; ++i) {
EXPECT_EQ(out_weights[i], out_weights_ref[i])
<< "weights don't match at" << i;
}
}
}