sglang_v0.5.2/sglang/python/sglang/srt/constrained/llguidance_backend.py

175 lines
6.0 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Constrained decoding with llguidance backend."""
import json
import logging
import os
from typing import List, Optional, Tuple
import torch
from llguidance import LLMatcher, LLTokenizer, StructTag, grammar_from
from llguidance.hf import from_tokenizer
from llguidance.torch import (
allocate_token_bitmask,
apply_token_bitmask_inplace,
fill_next_token_bitmask,
)
from sglang.srt.constrained.base_grammar_backend import (
INVALID_GRAMMAR_OBJ,
BaseGrammarBackend,
BaseGrammarObject,
)
logger = logging.getLogger(__name__)
class GuidanceGrammar(BaseGrammarObject):
def __init__(self, llguidance_tokenizer: LLTokenizer, serialized_grammar: str):
super().__init__()
self.llguidance_tokenizer = llguidance_tokenizer
self.serialized_grammar = serialized_grammar
self.ll_matcher = LLMatcher(
self.llguidance_tokenizer,
self.serialized_grammar,
log_level=int(os.environ.get("LLGUIDANCE_LOG_LEVEL", "1")),
)
self.finished = False
self.bitmask = None
def accept_token(self, token: int):
if not self.ll_matcher.consume_token(token):
logger.warning(f"matcher error: {self.ll_matcher.get_error()}")
self.finished = True
def fill_vocab_mask(self, vocab_mask: torch.Tensor, idx: int) -> None:
if self.ll_matcher.is_stopped():
self.finished = True
fill_next_token_bitmask(self.ll_matcher, vocab_mask, idx)
def allocate_vocab_mask(
self, vocab_size: int, batch_size: int, device
) -> torch.Tensor:
if self.bitmask is None or self.bitmask.shape[0] < batch_size:
# only create bitmask when batch gets larger
self.bitmask = allocate_token_bitmask(
batch_size, self.llguidance_tokenizer.vocab_size
)
bitmask = self.bitmask
else:
bitmask = self.bitmask[:batch_size]
return bitmask
@staticmethod
def move_vocab_mask(vocab_mask: torch.Tensor, device) -> torch.Tensor:
return vocab_mask.to(device, non_blocking=True)
@staticmethod
def apply_vocab_mask(logits: torch.Tensor, vocab_mask: torch.Tensor) -> None:
apply_token_bitmask_inplace(logits, vocab_mask)
def copy(self):
return GuidanceGrammar(
llguidance_tokenizer=self.llguidance_tokenizer,
serialized_grammar=self.serialized_grammar,
)
def try_jump_forward(self, tokenizer) -> Optional[Tuple[List[int], str]]:
ff_tokens = self.ll_matcher.compute_ff_tokens()
if ff_tokens:
return ff_tokens, ""
else:
return None
def jump_forward_str_state(self, helper: Tuple[List[int], str]) -> Tuple[str, int]:
return "", -1
def jump_and_retokenize(
self, old_output_ids: List[int], new_output_ids: List[int], next_state: int
):
pass
class GuidanceBackend(BaseGrammarBackend):
def __init__(
self,
tokenizer,
whitespace_pattern: Optional[str] = None,
n_vocab: Optional[int] = None,
):
super().__init__()
self.tokenizer = tokenizer
self.whitespace_pattern = whitespace_pattern
self.llguidance_tokenizer = from_tokenizer(self.tokenizer, n_vocab)
def _from_serialized(self, serialized_grammar) -> Optional[GuidanceGrammar]:
try:
return GuidanceGrammar(
llguidance_tokenizer=self.llguidance_tokenizer,
serialized_grammar=serialized_grammar,
)
except Exception as e:
logger.error(f"Hit invalid grammar: {serialized_grammar=}, {e=}")
return INVALID_GRAMMAR_OBJ
def dispatch_json(self, key_string: str) -> Optional[GuidanceGrammar]:
try:
serialized_grammar = LLMatcher.grammar_from_json_schema(
key_string,
defaults={
"whitespace_pattern": self.whitespace_pattern,
},
)
except Exception as e:
logger.error(f"Hit invalid json_schema: {key_string=}, {e=}")
return INVALID_GRAMMAR_OBJ
return self._from_serialized(serialized_grammar)
def dispatch_regex(self, key_string: str) -> Optional[GuidanceGrammar]:
serialized_grammar = grammar_from("regex", key_string)
return self._from_serialized(serialized_grammar)
def dispatch_ebnf(self, key_string: str) -> Optional[GuidanceGrammar]:
try:
serialized_grammar = grammar_from("ebnf", key_string)
return self._from_serialized(serialized_grammar)
except ValueError as e:
logger.error(f"Hit invalid ebnf: {key_string=}, {e=}")
return INVALID_GRAMMAR_OBJ
def dispatch_structural_tag(self, key_string: str) -> Optional[GuidanceGrammar]:
try:
structural_tag = json.loads(key_string)
tags = [
StructTag(
begin=structure["begin"],
grammar=structure["schema"],
end=structure["end"],
trigger=structural_tag["triggers"][0], # TODO?
)
for structure in structural_tag["structures"]
]
g = StructTag.to_grammar(tags)
return self._from_serialized(g)
except Exception as e:
logging.error(f"Hit invalid structural_tag: {key_string=}, {e=}")
return INVALID_GRAMMAR_OBJ