175 lines
6.0 KiB
Python
175 lines
6.0 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Constrained decoding with llguidance backend."""
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
from typing import List, Optional, Tuple
|
|
|
|
import torch
|
|
from llguidance import LLMatcher, LLTokenizer, StructTag, grammar_from
|
|
from llguidance.hf import from_tokenizer
|
|
from llguidance.torch import (
|
|
allocate_token_bitmask,
|
|
apply_token_bitmask_inplace,
|
|
fill_next_token_bitmask,
|
|
)
|
|
|
|
from sglang.srt.constrained.base_grammar_backend import (
|
|
INVALID_GRAMMAR_OBJ,
|
|
BaseGrammarBackend,
|
|
BaseGrammarObject,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class GuidanceGrammar(BaseGrammarObject):
|
|
|
|
def __init__(self, llguidance_tokenizer: LLTokenizer, serialized_grammar: str):
|
|
super().__init__()
|
|
self.llguidance_tokenizer = llguidance_tokenizer
|
|
self.serialized_grammar = serialized_grammar
|
|
|
|
self.ll_matcher = LLMatcher(
|
|
self.llguidance_tokenizer,
|
|
self.serialized_grammar,
|
|
log_level=int(os.environ.get("LLGUIDANCE_LOG_LEVEL", "1")),
|
|
)
|
|
self.finished = False
|
|
self.bitmask = None
|
|
|
|
def accept_token(self, token: int):
|
|
if not self.ll_matcher.consume_token(token):
|
|
logger.warning(f"matcher error: {self.ll_matcher.get_error()}")
|
|
self.finished = True
|
|
|
|
def fill_vocab_mask(self, vocab_mask: torch.Tensor, idx: int) -> None:
|
|
if self.ll_matcher.is_stopped():
|
|
self.finished = True
|
|
|
|
fill_next_token_bitmask(self.ll_matcher, vocab_mask, idx)
|
|
|
|
def allocate_vocab_mask(
|
|
self, vocab_size: int, batch_size: int, device
|
|
) -> torch.Tensor:
|
|
if self.bitmask is None or self.bitmask.shape[0] < batch_size:
|
|
# only create bitmask when batch gets larger
|
|
self.bitmask = allocate_token_bitmask(
|
|
batch_size, self.llguidance_tokenizer.vocab_size
|
|
)
|
|
bitmask = self.bitmask
|
|
else:
|
|
bitmask = self.bitmask[:batch_size]
|
|
|
|
return bitmask
|
|
|
|
@staticmethod
|
|
def move_vocab_mask(vocab_mask: torch.Tensor, device) -> torch.Tensor:
|
|
return vocab_mask.to(device, non_blocking=True)
|
|
|
|
@staticmethod
|
|
def apply_vocab_mask(logits: torch.Tensor, vocab_mask: torch.Tensor) -> None:
|
|
apply_token_bitmask_inplace(logits, vocab_mask)
|
|
|
|
def copy(self):
|
|
return GuidanceGrammar(
|
|
llguidance_tokenizer=self.llguidance_tokenizer,
|
|
serialized_grammar=self.serialized_grammar,
|
|
)
|
|
|
|
def try_jump_forward(self, tokenizer) -> Optional[Tuple[List[int], str]]:
|
|
ff_tokens = self.ll_matcher.compute_ff_tokens()
|
|
if ff_tokens:
|
|
return ff_tokens, ""
|
|
else:
|
|
return None
|
|
|
|
def jump_forward_str_state(self, helper: Tuple[List[int], str]) -> Tuple[str, int]:
|
|
return "", -1
|
|
|
|
def jump_and_retokenize(
|
|
self, old_output_ids: List[int], new_output_ids: List[int], next_state: int
|
|
):
|
|
pass
|
|
|
|
|
|
class GuidanceBackend(BaseGrammarBackend):
|
|
|
|
def __init__(
|
|
self,
|
|
tokenizer,
|
|
whitespace_pattern: Optional[str] = None,
|
|
n_vocab: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.tokenizer = tokenizer
|
|
self.whitespace_pattern = whitespace_pattern
|
|
self.llguidance_tokenizer = from_tokenizer(self.tokenizer, n_vocab)
|
|
|
|
def _from_serialized(self, serialized_grammar) -> Optional[GuidanceGrammar]:
|
|
try:
|
|
return GuidanceGrammar(
|
|
llguidance_tokenizer=self.llguidance_tokenizer,
|
|
serialized_grammar=serialized_grammar,
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Hit invalid grammar: {serialized_grammar=}, {e=}")
|
|
return INVALID_GRAMMAR_OBJ
|
|
|
|
def dispatch_json(self, key_string: str) -> Optional[GuidanceGrammar]:
|
|
try:
|
|
serialized_grammar = LLMatcher.grammar_from_json_schema(
|
|
key_string,
|
|
defaults={
|
|
"whitespace_pattern": self.whitespace_pattern,
|
|
},
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Hit invalid json_schema: {key_string=}, {e=}")
|
|
return INVALID_GRAMMAR_OBJ
|
|
return self._from_serialized(serialized_grammar)
|
|
|
|
def dispatch_regex(self, key_string: str) -> Optional[GuidanceGrammar]:
|
|
serialized_grammar = grammar_from("regex", key_string)
|
|
return self._from_serialized(serialized_grammar)
|
|
|
|
def dispatch_ebnf(self, key_string: str) -> Optional[GuidanceGrammar]:
|
|
try:
|
|
serialized_grammar = grammar_from("ebnf", key_string)
|
|
return self._from_serialized(serialized_grammar)
|
|
except ValueError as e:
|
|
logger.error(f"Hit invalid ebnf: {key_string=}, {e=}")
|
|
return INVALID_GRAMMAR_OBJ
|
|
|
|
def dispatch_structural_tag(self, key_string: str) -> Optional[GuidanceGrammar]:
|
|
try:
|
|
structural_tag = json.loads(key_string)
|
|
tags = [
|
|
StructTag(
|
|
begin=structure["begin"],
|
|
grammar=structure["schema"],
|
|
end=structure["end"],
|
|
trigger=structural_tag["triggers"][0], # TODO?
|
|
)
|
|
for structure in structural_tag["structures"]
|
|
]
|
|
g = StructTag.to_grammar(tags)
|
|
return self._from_serialized(g)
|
|
except Exception as e:
|
|
logging.error(f"Hit invalid structural_tag: {key_string=}, {e=}")
|
|
return INVALID_GRAMMAR_OBJ
|