sglang_v0.5.2/flashinfer_0.3.1/flashinfer/triton/kernels/sm_constraint_gemm.py

291 lines
9.5 KiB
Python

import triton # type: ignore[import]
import triton.language as tl # type: ignore[import]
def matmul_get_configs():
return [
triton.Config(
{
"BLOCK_SIZE_M": BM,
"BLOCK_SIZE_N": BN,
"BLOCK_SIZE_K": BK,
"GROUP_SIZE_M": 8,
},
num_stages=s,
num_warps=w,
)
for BM in [128]
for BN in [128]
for BK in [64]
for s in ([3])
for w in [4]
]
def _matmul_launch_metadata(grid, kernel, args):
ret = {}
M, N, K = args["M"], args["N"], args["K"]
ret["name"] = f"{kernel.name} [M={M}, N={N}, K={K}]"
if "c_ptr" in args:
bytes_per_elem = args["c_ptr"].element_size()
else:
bytes_per_elem = 1 if args["FP8_OUTPUT"] else 2
ret[f"flops{bytes_per_elem * 8}"] = 2.0 * M * N * K
ret["bytes"] = bytes_per_elem * (M * K + N * K + M * N)
return ret
@triton.jit
def _compute_pid(tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS):
group_id = tile_id // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (tile_id % group_size_m)
pid_n = (tile_id % num_pid_in_group) // group_size_m
return pid_m, pid_n
@triton.autotune(
configs=matmul_get_configs(),
key=["M", "N", "K"],
)
@triton.jit(launch_metadata=_matmul_launch_metadata)
def gemm_kernel_persistent(
a_ptr,
b_ptr,
c_ptr,
M,
N,
K,
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
alpha,
beta,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
NUM_SMS: tl.constexpr,
):
start_pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
k_tiles = tl.cdiv(K, BLOCK_SIZE_K)
num_tiles = num_pid_m * num_pid_n
# NOTE: There is currently a bug in blackwell pipelining that means it can't handle a value being
# used in both the prologue and epilogue, so we duplicate the counters as a work-around.
tile_id_c = start_pid - NUM_SMS
offs_k_for_mask = tl.arange(0, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
for tile_id in tl.range(start_pid, num_tiles, NUM_SMS, flatten=True):
pid_m, pid_n = _compute_pid(
tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS
)
start_m = pid_m * BLOCK_SIZE_M
start_n = pid_n * BLOCK_SIZE_N
offs_am = start_m + tl.arange(0, BLOCK_SIZE_M)
offs_bn = start_n + tl.arange(0, BLOCK_SIZE_N)
offs_am = tl.where(offs_am < M, offs_am, 0)
offs_bn = tl.where(offs_bn < N, offs_bn, 0)
offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M)
offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for ki in range(k_tiles):
offs_k = ki * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (
offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak
)
b_ptrs = b_ptr + (
offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn
)
a = tl.load(
a_ptrs, mask=offs_k_for_mask[None, :] < K - ki * BLOCK_SIZE_K, other=0.0
)
b = tl.load(
b_ptrs, mask=offs_k_for_mask[:, None] < K - ki * BLOCK_SIZE_K, other=0.0
)
accumulator = tl.dot(a, b, accumulator)
tile_id_c += NUM_SMS
pid_m, pid_n = _compute_pid(
tile_id_c, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS
)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
c = accumulator.to(c_ptr.dtype.element_ty)
c = tl.fma(c, alpha, beta * tl.load(c_ptrs, mask=c_mask))
tl.store(c_ptrs, c, mask=c_mask)
@triton.jit(launch_metadata=_matmul_launch_metadata)
def gemm_kernel_descriptor_persistent(
a_ptr,
b_ptr,
c_ptr, #
M,
N,
K, #
alpha,
beta,
BLOCK_SIZE_M: tl.constexpr, #
BLOCK_SIZE_N: tl.constexpr, #
BLOCK_SIZE_K: tl.constexpr, #
GROUP_SIZE_M: tl.constexpr, #
EPILOGUE_SUBTILE: tl.constexpr, #
NUM_SMS: tl.constexpr,
): #
dtype = c_ptr.dtype.element_ty
start_pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
k_tiles = tl.cdiv(K, BLOCK_SIZE_K)
num_tiles = num_pid_m * num_pid_n
a_desc = tl.make_tensor_descriptor(
a_ptr,
shape=[M, K],
strides=[K, 1],
block_shape=[BLOCK_SIZE_M, BLOCK_SIZE_K],
)
b_desc = tl.make_tensor_descriptor(
b_ptr,
shape=[N, K],
strides=[K, 1],
block_shape=[BLOCK_SIZE_N, BLOCK_SIZE_K],
)
c_desc = tl.make_tensor_descriptor(
c_ptr,
shape=[M, N],
strides=[N, 1],
block_shape=[
BLOCK_SIZE_M,
BLOCK_SIZE_N if not EPILOGUE_SUBTILE else BLOCK_SIZE_N // 2,
],
)
# tile_id_c is used in the epilogue to break the dependency between
# the prologue and the epilogue
tile_id_c = start_pid - NUM_SMS
num_pid_in_group = GROUP_SIZE_M * num_pid_n
for tile_id in tl.range(start_pid, num_tiles, NUM_SMS, flatten=True):
pid_m, pid_n = _compute_pid(
tile_id, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS
)
offs_am = pid_m * BLOCK_SIZE_M
offs_bn = pid_n * BLOCK_SIZE_N
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for ki in range(k_tiles):
offs_k = ki * BLOCK_SIZE_K
a = a_desc.load([offs_am, offs_k])
b = b_desc.load([offs_bn, offs_k])
accumulator = tl.dot(a, b.T, accumulator)
tile_id_c += NUM_SMS
pid_m, pid_n = _compute_pid(
tile_id_c, num_pid_in_group, num_pid_m, GROUP_SIZE_M, NUM_SMS
)
offs_cm = pid_m * BLOCK_SIZE_M
offs_cn = pid_n * BLOCK_SIZE_N
if EPILOGUE_SUBTILE:
acc = tl.reshape(accumulator, (BLOCK_SIZE_M, 2, BLOCK_SIZE_N // 2))
acc = tl.permute(acc, (0, 2, 1))
acc0, acc1 = tl.split(acc)
acc0 = tl.fma(acc0, alpha, beta * c_desc.load([offs_cm, offs_cn]))
acc1 = tl.fma(
acc1, alpha, beta * c_desc.load([offs_cm, offs_cn + BLOCK_SIZE_N // 2])
)
c0 = acc0.to(dtype)
c_desc.store([offs_cm, offs_cn], c0)
c1 = acc1.to(dtype)
c_desc.store([offs_cm, offs_cn + BLOCK_SIZE_N // 2], c1)
else:
accumulator = tl.fma(
accumulator, alpha, beta * c_desc.load([offs_cm, offs_cn])
)
c = accumulator.to(dtype)
c_desc.store([offs_cm, offs_cn], c)
# only for testing
@triton.autotune(
configs=matmul_get_configs(),
key=["M", "N", "K"],
)
@triton.jit(launch_metadata=_matmul_launch_metadata)
def gemm_kernel(
a_ptr,
b_ptr,
c_ptr, #
M,
N,
K, #
stride_am,
stride_ak, #
stride_bk,
stride_bn, #
stride_cm,
stride_cn, #
alpha,
beta,
BLOCK_SIZE_M: tl.constexpr, #
BLOCK_SIZE_N: tl.constexpr, #
BLOCK_SIZE_K: tl.constexpr, #
GROUP_SIZE_M: tl.constexpr, #
):
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
start_m = pid_m * BLOCK_SIZE_M
start_n = pid_n * BLOCK_SIZE_N
offs_am = start_m + tl.arange(0, BLOCK_SIZE_M)
offs_bn = start_n + tl.arange(0, BLOCK_SIZE_N)
offs_am = tl.where(offs_am < M, offs_am, 0)
offs_bn = tl.where(offs_bn < N, offs_bn, 0)
offs_am = tl.max_contiguous(tl.multiple_of(offs_am, BLOCK_SIZE_M), BLOCK_SIZE_M)
offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn, BLOCK_SIZE_N), BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
accumulator = tl.dot(a, b, accumulator)
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
c = accumulator.to(c_ptr.dtype.element_ty)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
c = tl.fma(c, alpha, beta * tl.load(c_ptrs, mask=c_mask))
tl.store(c_ptrs, c, mask=c_mask)