sglang_v0.5.2/flashinfer_0.3.1/include/flashinfer/attention/hopper/quantization/epilogue.cuh

217 lines
9.9 KiB
Plaintext

/*
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri
* Dao. Licensed under the BSD 3-Clause.
*
* Modified by the FlashInfer team.
*/
#ifndef FLASHINFER_ATTENTION_HOPPER_FP8_EPILOGUE_CUH_
#define FLASHINFER_ATTENTION_HOPPER_FP8_EPILOGUE_CUH_
#include <cutlass/cutlass.h>
#include "../../../math.cuh"
#include "../epilogue.cuh"
#include "../named_barrier.cuh"
#include "../utils.cuh"
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
namespace flashinfer {
using namespace cute;
template <typename Ktraits>
struct FP8CollectiveEpilogue {
using DTypeO = typename Ktraits::DTypeO;
static constexpr int CTA_Q = Ktraits::CTA_Q;
static constexpr int CTA_KV = Ktraits::CTA_KV;
static constexpr int HEAD_DIM = Ktraits::HEAD_DIM;
using TileShape_QKD = Shape<Int<CTA_Q>, Int<CTA_KV>, Int<HEAD_DIM>>;
static constexpr int NUM_WARPS = Ktraits::NUM_WARPS;
static constexpr int NUM_THREADS = NUM_WARPS * cutlass::NumThreadsPerWarp;
static constexpr int NUM_COPY_THREADS = cutlass::NumThreadsPerWarpGroup;
static constexpr int NUM_MMA_THREADS = NUM_THREADS - NUM_COPY_THREADS;
using SmemLayoutAtomO = decltype(cutlass::gemm::collective::detail::ss_smem_selector<
GMMA::Major::K, DTypeO, decltype(cute::get<0>(TileShape_QKD{})),
decltype(cute::get<2>(TileShape_QKD{}))>());
using SmemLayoutO = decltype(tile_to_shape(SmemLayoutAtomO{}, select<0, 2>(TileShape_QKD{})));
using SmemCopyAtomO = Copy_Atom<cute::SM90_U32x4_STSM_N, DTypeO>;
using SharedStorage = cute::array_aligned<DTypeO, cute::cosize_v<SmemLayoutO>>;
using ShapeT = cute::Shape<int32_t, int32_t, int32_t>;
using StrideT = cute::Shape<int64_t, _1, int64_t>;
using LayoutT = cute::Layout<ShapeT, StrideT>;
using ShapeLseT = cute::Shape<int32_t, int32_t>;
using StrideLseT = cute::Shape<_1, int64_t>;
using LayoutLseT = cute::Layout<ShapeLseT, StrideLseT>;
using GmemTiledCopyOTMA = cute::SM90_TMA_STORE;
using TMA_O = decltype(make_tma_copy(
GmemTiledCopyOTMA{},
make_tensor(make_gmem_ptr(static_cast<DTypeO*>(nullptr)), ShapeT{}, StrideT{}), SmemLayoutO{},
select<0, 2>(TileShape_QKD{}), _1{})); // no mcast for O
static constexpr int VEC_SIZE = cute::ceil_div(128, sizeof_bits_v<DTypeO>);
static_assert(HEAD_DIM % VEC_SIZE == 0);
static constexpr int NUM_THREADS_PER_ROW = HEAD_DIM / VEC_SIZE;
static_assert(NUM_MMA_THREADS % NUM_THREADS_PER_ROW == 0);
static constexpr int NUM_ROWS = NUM_MMA_THREADS / NUM_THREADS_PER_ROW;
using TiledCopyOAtom = cute::Copy_Atom<cute::UniversalCopy<cutlass::uint128_t>, DTypeO>;
using TiledCopyOThrLayout = decltype(cute::make_layout(
cute::make_shape(Int<NUM_ROWS>{}, Int<NUM_THREADS_PER_ROW>{}), LayoutRight{}));
using TiledCopyOValLayout =
decltype(cute::make_layout(cute::make_shape(_1{}, Int<VEC_SIZE>{}), LayoutRight{}));
using TiledCopyO =
decltype(make_tiled_copy(TiledCopyOAtom{}, TiledCopyOThrLayout{}, // Thr layout
TiledCopyOValLayout{} // Val layout
));
// used for rmem -> smem O copy in fp8 kernel to undo column permutation
using ThreadLayoutrO = Layout<Shape<_8, Int<CTA_Q / 16>, _4, _1>, Stride<_4, _32, _1, _0>>;
using ValueLayoutrO =
Layout<Shape<_1, _2, Shape<_2, _2>, Int<HEAD_DIM / 16>>, Stride<_0, _2, Stride<_4, _1>, _8>>;
using TiledCopyrO = decltype(make_tiled_copy(Copy_Atom<UniversalCopy<uint16_t>, DTypeO>{},
ThreadLayoutrO{}, ValueLayoutrO{}));
using TiledCopyShaperO = Shape<_8, Int<CTA_Q / 8>, _16, Int<HEAD_DIM / 16>>;
using SmemLayoutrO = decltype(composition(SmemLayoutO{}, Layout<TiledCopyShaperO>{}));
// Host side kernel arguments
struct Arguments {
DTypeO* O_ptr;
LayoutT const layout_O;
float* lse_ptr;
LayoutLseT const layout_LSE;
};
// Device side kernel params
struct Params {
DTypeO* O_ptr;
LayoutT const layout_O;
float* lse_ptr;
LayoutLseT const layout_LSE;
};
static Params to_underlying_arguments(Arguments const& args) {
Tensor mO = make_tensor(make_gmem_ptr(args.O_ptr), args.layout_O);
return {args.O_ptr, args.layout_O, args.lse_ptr, args.layout_LSE};
}
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& epilogue_params) {}
template <typename BlockCoord, typename SharedStorage, typename FrgTensorO, typename FrgTensorLSE,
typename TiledMma>
CUTLASS_DEVICE void store(Params const& epilogue_params, FrgTensorO const& tOrO,
FrgTensorLSE const& lse, SharedStorage& shared_storage,
TiledMma tiled_mma, int thread_idx, BlockCoord const& block_coord) {
auto [qo_tile_idx, qo_head_idx, kv_head_idx, qo_indptr, kv_indptr, qo_len, kv_len, batch_idx] =
block_coord;
// No need for FP8 column permutation
// as it has been done in the Transpose Phase.
Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutO{});
auto smem_tiled_copy_O = make_tiled_copy_C(SmemCopyAtomO{}, tiled_mma);
auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOrO_out = convert_type<DTypeO>(tOrO);
Tensor taccOrO = smem_thr_copy_O.retile_S(tOrO_out); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// Make sure all WGs have finished reading V
cutlass::arch::NamedBarrier::sync(NUM_MMA_THREADS,
/*id=*/static_cast<int>(NamedBarriers::kValueEmpty));
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA
Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.lse_ptr), epilogue_params.layout_LSE);
Tensor gLSE = get_lse_local_tile_tensor(mLSE, Shape<Int<CTA_Q>>{}, qo_head_idx, qo_indptr,
qo_len)(_, qo_tile_idx);
Tensor caccO = cute::make_identity_tensor(select<0, 2>(TileShape_QKD{}));
auto thread_mma = tiled_mma.get_thread_slice(thread_idx);
Tensor taccOcO = thread_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K)
static_assert(decltype(size<0, 0>(taccOcO))::value == 2);
static_assert(decltype(size<0, 1>(taccOcO))::value == 2);
// taccOcO has shape ((2, 2, V), MMA_M, MMA_K), we only take only the row indices.
Tensor taccOcO_row = taccOcO(make_coord(_0{}, _, _0{}), _, _0{});
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
if (epilogue_params.lse_ptr) { // don't write to LSE if it's nullptr
if (get<1>(taccOcO_row(_0{})) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < qo_len - qo_tile_idx * CTA_Q) {
gLSE(row) = lse(mi);
}
}
}
}
// make sure all WG finish STSM o
cutlass::arch::NamedBarrier::sync(NUM_MMA_THREADS,
cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
TiledCopyO gmem_tiled_copy_O;
int write_warp_idx = NUM_WARPS - 1;
write_O<NUM_COPY_THREADS>(epilogue_params.O_ptr, gmem_tiled_copy_O, epilogue_params.layout_O,
select<0, 2>(TileShape_QKD{}), sO, thread_idx, qo_tile_idx,
qo_head_idx, qo_indptr, qo_len, write_warp_idx);
}
CUTLASS_DEVICE void store_tail() {
// tma_store_wait<0>();
}
// Write 0 to output and -inf to LSE
template <typename BlockCoord, typename SharedStorage>
CUTLASS_DEVICE void store_zero(Params const& epilogue_params, SharedStorage& shared_storage,
int thread_idx, BlockCoord const& block_coord) {
auto [qo_tile_idx, qo_head_idx, kv_head_idx, qo_indptr, kv_indptr, qo_len, kv_len, batch_idx] =
block_coord;
Tensor mO = make_tensor(make_gmem_ptr(epilogue_params.O_ptr), epilogue_params.layout_O);
Tensor gO = get_local_tile_tensor(mO, select<0, 2>(TileShape_QKD{}), qo_head_idx, qo_indptr,
qo_len)(_, _, qo_tile_idx); // (O, D)
Tensor cO = cute::make_identity_tensor(gO.shape()); // (O, D) -> (o_idx, d_idx)
Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.lse_ptr), epilogue_params.layout_LSE);
Tensor gLSE = get_lse_local_tile_tensor(mLSE, Shape<Int<CTA_Q>>{}, qo_head_idx, qo_indptr,
qo_len)(_, qo_tile_idx);
TiledCopyO tiled_copy_O;
auto thr_copy_O = tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOgO = thr_copy_O.partition_D(gO); // (CPY, CPY_O, CPY_D)
Tensor tOrO = make_fragment_like(tOgO); // (CPY, CPY_O, CPY_D)
clear(tOrO);
Tensor tOcO = thr_copy_O.partition_D(cO); // (CPY, CPY_O, CPY_D)
Tensor tOgOGroup = flatten_1(tOgO); // (CPY, (CPY_O, CPY_D))
Tensor tOrOGroup = flatten_1(tOrO); // (CPY, (CPY_O, CPY_D))
Tensor tOcOGroup = flatten_1(tOcO); // (CPY, (CPY_O, CPY_D))
const int qo_tile_size = get<0>(TileShape_QKD{});
int valid_qo_tile_size = std::min<int>(qo_len - qo_tile_idx * qo_tile_size, qo_tile_size);
if (valid_qo_tile_size == qo_tile_size) {
copy(tiled_copy_O, tOrOGroup, tOgOGroup);
} else {
auto predicate_fn = [&](auto coords) {
auto s_coords = tOcOGroup(_0{}, coords);
return elem_less(get<0>(s_coords), valid_qo_tile_size);
};
copy_if(tiled_copy_O, predicate_fn, tOrOGroup, tOgOGroup);
}
static_assert(CTA_Q <= NUM_MMA_THREADS);
if (epilogue_params.lse_ptr) { // don't write to LSE if it's nullptr
if (thread_idx < qo_len - qo_tile_idx * CTA_Q) {
gLSE(thread_idx) = -math::inf;
}
}
}
};
} // namespace flashinfer
#endif // FLASHINFER_ATTENTION_HOPPER_FP8_EPILOGUE_CUH_