sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/bench/qs8-gemm.cc

127 lines
4.3 KiB
C++

// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <functional>
#include <limits>
#include <mutex>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#include "gemm-benchmark.h"
#include "utils.h"
#ifdef BENCHMARK_RUY
#include "ruy/ruy.h"
#endif // BENCHMARK_RUY
#include "xnnpack/buffer.h"
#include "xnnpack/isa-checks.h"
#include "xnnpack/gemm.h"
#include "xnnpack/microfnptr.h"
#include "xnnpack/microparams-init.h"
#ifdef BENCHMARK_RUY
static void RuyBenchmark(benchmark::State& state, size_t threads)
{
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
nc * (sizeof(int8_t) * (mc + kc) + sizeof(int32_t)));
xnnpack::Buffer<int8_t> a(mc * kc);
xnnpack::fill_uniform_random_bits(a.data(), a.size(), rng);
xnnpack::Buffer<int8_t> k(num_buffers * nc * kc);
xnnpack::fill_uniform_random_bits(k.data(), k.size(), rng);
xnnpack::Buffer<int32_t> b(num_buffers * nc);
std::generate(b.begin(), b.end(), std::ref(i32rng));
xnnpack::Buffer<int8_t> c(num_buffers * nc * mc);
// Note: context must be static to avoid the cost of re-creating it for each benchmark.
static ruy::Context context;
context.set_max_num_threads(threads);
ruy::Matrix<int8_t> ruy_a;
ruy::MakeSimpleLayout(nc, kc, ruy::Order::kRowMajor, ruy_a.mutable_layout());
ruy_a.set_zero_point(127);
ruy::Matrix<int8_t> ruy_b;
ruy::MakeSimpleLayout(kc, mc, ruy::Order::kColMajor, ruy_b.mutable_layout());
ruy_b.set_data(a.data());
ruy_b.set_zero_point(127);
ruy_b.set_cache_policy(ruy::CachePolicy::kAlwaysCache);
ruy::Matrix<int8_t> ruy_c;
ruy::MakeSimpleLayout(nc, mc, ruy::Order::kColMajor, ruy_c.mutable_layout());
ruy_c.set_zero_point(127);
ruy::MulParams<int32_t, int8_t> mul_params;
mul_params.set_multiplier_fixedpoint(0x40000000);
// ruy::Context uses deferred initialization, which affects percieved GEMM performance. Initialization happens during
// the first GEMM calls, and per Benoit Jacob it takes up to ~250 milliseconds for performance to stabilize.
// Thus, on the first benchmark, we compute GEMM for 500 milliseconds (to be safe) without recording performance, and
// keep the ruy::Context object initialized (by being static) between subsequent benchmarks.
static std::once_flag warmup;
std::call_once(warmup, [&](){
auto start = std::chrono::steady_clock::now();
do {
ruy_a.set_data(k.data());
ruy_c.set_data(c.data());
mul_params.set_bias(b.data());
ruy::Mul(ruy_a, ruy_b, mul_params, &context, &ruy_c);
} while (std::chrono::duration<double>(std::chrono::steady_clock::now() - start).count() < 0.5);
});
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - K is not in cache (for any cache level)
// - B is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(int8_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
ruy_a.set_data(k.data() + buffer_index * nc * kc);
ruy_c.set_data(c.data() + buffer_index * mc * nc);
mul_params.set_bias(b.data() + buffer_index * nc);
ruy::Mul(ruy_a, ruy_b, mul_params, &context, &ruy_c);
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
static void ruy_st(benchmark::State& state, const char* net)
{
RuyBenchmark(state, 1);
}
BENCHMARK_GEMM(ruy_st)
#endif // BENCHMARK_RUY
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif