sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/avgpool-microkernel-tester.h

1190 lines
55 KiB
C++

// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/buffer.h"
#include "xnnpack/math.h"
#include "xnnpack/microfnptr.h"
#include "xnnpack/microparams.h"
#include "xnnpack/requantization.h"
#include "next_prime.h"
#include "replicable_random_device.h"
class AvgPoolMicrokernelTester {
public:
AvgPoolMicrokernelTester& output_pixels(size_t output_pixels) {
assert(output_pixels != 0);
this->output_pixels_ = output_pixels;
return *this;
}
size_t output_pixels() const {
return this->output_pixels_;
}
AvgPoolMicrokernelTester& step(size_t step) {
assert(step != 0);
this->step_ = step;
return *this;
}
size_t step() const {
return this->step_;
}
AvgPoolMicrokernelTester& input_offset(size_t input_offset) {
assert(input_offset != 0);
this->input_offset_ = input_offset;
return *this;
}
size_t input_offset() const {
return this->input_offset_;
}
AvgPoolMicrokernelTester& zero_index_mod2(size_t zero_index_mod2) {
this->zero_index_mod2_ = zero_index_mod2;
return *this;
}
size_t zero_index_mod2() const {
return this->zero_index_mod2_;
}
AvgPoolMicrokernelTester& pooling_elements(size_t pooling_elements) {
assert(pooling_elements != 0);
this->pooling_elements_ = pooling_elements;
return *this;
}
size_t pooling_elements() const {
return this->pooling_elements_;
}
size_t packed_pooling_elements() const {
if (pooling_elements() <= primary_pooling_tile()) {
return primary_pooling_tile();
} else {
return (pooling_elements() - primary_pooling_tile()) % incremental_pooling_tile() == 0 ? pooling_elements() : ((pooling_elements() - primary_pooling_tile()) / incremental_pooling_tile() + 1) * incremental_pooling_tile() + primary_pooling_tile();
}
}
AvgPoolMicrokernelTester& pooling_tile(size_t primary_tile, size_t incremental_tile = 0) {
assert(primary_tile != 0);
this->primary_pooling_tile_ = primary_tile;
this->incremental_pooling_tile_ = incremental_tile;
return *this;
}
AvgPoolMicrokernelTester& primary_pooling_tile(size_t primary_pooling_tile) {
assert(primary_pooling_tile != 0);
this->primary_pooling_tile_ = primary_pooling_tile;
return *this;
}
size_t primary_pooling_tile() const {
return this->primary_pooling_tile_;
}
AvgPoolMicrokernelTester& incremental_pooling_tile(size_t incremental_pooling_tile) {
assert(incremental_pooling_tile != 0);
this->incremental_pooling_tile_ = incremental_pooling_tile;
return *this;
}
size_t incremental_pooling_tile() const {
return this->incremental_pooling_tile_;
}
AvgPoolMicrokernelTester& channels(size_t channels) {
assert(channels != 0);
this->channels_ = channels;
return *this;
}
size_t channels() const {
return this->channels_;
}
AvgPoolMicrokernelTester& output_stride(size_t output_stride) {
assert(output_stride != 0);
this->output_stride_ = output_stride;
return *this;
}
size_t output_stride() const {
if (this->output_stride_ == 0) {
return channels();
} else {
assert(this->output_stride_ >= channels());
return this->output_stride_;
}
}
AvgPoolMicrokernelTester& input_scale(float input_scale) {
assert(input_scale > 0.0f);
assert(std::isnormal(input_scale));
this->input_scale_ = input_scale;
return *this;
}
float input_scale() const {
return this->input_scale_;
}
AvgPoolMicrokernelTester& input_zero_point(uint8_t input_zero_point) {
this->input_zero_point_ = input_zero_point;
return *this;
}
uint8_t input_zero_point() const {
return this->input_zero_point_;
}
AvgPoolMicrokernelTester& output_scale(float output_scale) {
assert(output_scale > 0.0f);
assert(std::isnormal(output_scale));
this->output_scale_ = output_scale;
return *this;
}
float output_scale() const {
return this->output_scale_;
}
AvgPoolMicrokernelTester& output_zero_point(uint8_t output_zero_point) {
this->output_zero_point_ = output_zero_point;
return *this;
}
uint8_t output_zero_point() const {
return this->output_zero_point_;
}
AvgPoolMicrokernelTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
uint8_t qmin() const {
return this->qmin_;
}
AvgPoolMicrokernelTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
uint8_t qmax() const {
return this->qmax_;
}
AvgPoolMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
size_t iterations() const {
return this->iterations_;
}
void Test(xnn_f16_avgpool_minmax_unipass_ukernel_fn avgpool_minmax, xnn_init_f16_scaleminmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
xnnpack::Buffer<const xnn_float16*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<xnn_float16> input(XNN_EXTRA_BYTES / sizeof(xnn_float16) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<xnn_float16> zero(channels() + XNN_EXTRA_BYTES / sizeof(xnn_float16), 0);
xnnpack::Buffer<xnn_float16> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(xnn_float16), input.end(), std::nanf(""));
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t p = 0; p < pooling_elements(); p++) {
const xnn_float16* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += row[c + input_offset()];
}
}
output_ref[x * channels() + c] = acc / float(pooling_elements());
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
float output_min_as_float = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
float output_max_as_float = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
const xnn_float16 output_min_as_half = static_cast<xnn_float16>(output_min_as_float);
const xnn_float16 output_max_as_half = static_cast<xnn_float16>(output_max_as_float);
output_min_as_float = output_min_as_half;
output_max_as_float = output_max_as_half;
// Clamp reference results.
for (float& output_value : output_ref) {
output_value = std::max(std::min(output_value, output_max_as_float), output_min_as_float);
}
// Prepare parameters.
xnn_f16_scaleminmax_params params;
init_params(&params, static_cast<xnn_float16>(1.0f / float(pooling_elements())), output_min_as_half, output_max_as_half);
// Call optimized micro-kernel.
avgpool_minmax(output_pixels(), pooling_elements(), channels(),
reinterpret_cast<const xnn_float16**>(indirect_input.data()), input_offset() * sizeof(xnn_float16), zero.data(),
output.data(),
step() * sizeof(void*),
(output_stride() - channels()) * sizeof(xnn_float16),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(output[x * output_stride() + c], output_min_as_float)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(output[x * output_stride() + c], output_max_as_float)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(
output[x * output_stride() + c],
output_ref[x * channels() + c],
std::max(1.0e-4f, std::abs(output_ref[x * channels() + c]) * 3.0e-3f))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
void Test(xnn_f16_avgpool_minmax_multipass_ukernel_fn avgpool_minmax, xnn_init_f16_scaleminmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
xnnpack::Buffer<const xnn_float16*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<xnn_float16> input(XNN_EXTRA_BYTES / sizeof(xnn_float16) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<xnn_float16> zero(channels() + XNN_EXTRA_BYTES / sizeof(xnn_float16), 0);
xnnpack::Buffer<xnn_float16> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
xnnpack::Buffer<xnn_float16, XNN_ALLOCATION_ALIGNMENT> buffer(
XNN_EXTRA_BYTES / sizeof(xnn_float16) + channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(xnn_float16), input.end(), std::nanf(""));
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t p = 0; p < pooling_elements(); p++) {
const xnn_float16* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += row[c + input_offset()];
}
}
output_ref[x * channels() + c] = acc / float(pooling_elements());
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
float output_min_as_float = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
float output_max_as_float = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
const xnn_float16 output_min_as_half = static_cast<xnn_float16>(output_min_as_float);
const xnn_float16 output_max_as_half = static_cast<xnn_float16>(output_max_as_float);
output_min_as_float = output_min_as_half;
output_max_as_float = output_max_as_half;
// Clamp reference results.
for (float& output_value : output_ref) {
output_value = std::max(std::min(output_value, output_max_as_float), output_min_as_float);
}
// Prepare parameters.
xnn_f16_scaleminmax_params params;
init_params(&params, static_cast<xnn_float16>(1.0f / float(pooling_elements())), output_min_as_half, output_max_as_half);
// Call optimized micro-kernel.
avgpool_minmax(output_pixels(), pooling_elements(), channels(),
reinterpret_cast<const xnn_float16**>(indirect_input.data()), input_offset() * sizeof(xnn_float16), zero.data(),
buffer.data(), output.data(),
(step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
(output_stride() - channels()) * sizeof(xnn_float16),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(output[x * output_stride() + c], output_min_as_float)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(output[x * output_stride() + c], output_max_as_float)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(
output[x * output_stride() + c],
output_ref[x * channels() + c],
std::max(1.0e-4f, std::abs(output_ref[x * channels() + c]) * 3.0e-3f))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
void Test(xnn_f32_avgpool_minmax_unipass_ukernel_fn avgpool_minmax, xnn_init_f32_scaleminmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
xnnpack::Buffer<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<float> input(XNN_EXTRA_BYTES / sizeof(float) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float), 0.0f);
xnnpack::Buffer<float> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf(""));
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t p = 0; p < pooling_elements(); p++) {
const float* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += row[c + input_offset()];
}
}
output_ref[x * channels() + c] = acc / float(pooling_elements());
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
// Clamp reference results.
for (float& output_value : output_ref) {
output_value = std::max(std::min(output_value, output_max), output_min);
}
// Prepare parameters.
xnn_f32_scaleminmax_params params;
init_params(&params, 1.0f / float(pooling_elements()), output_min, output_max);
// Call optimized micro-kernel.
avgpool_minmax(output_pixels(), pooling_elements(), channels(),
indirect_input.data(), input_offset() * sizeof(float), zero.data(),
output.data(),
step() * sizeof(void*),
(output_stride() - channels()) * sizeof(float),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(output[x * output_stride() + c], output_min)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(output[x * output_stride() + c], output_max)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(
output[x * output_stride() + c],
output_ref[x * channels() + c],
std::abs(output_ref[x * channels() + c]) * 1.0e-6f)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
void Test(xnn_f32_avgpool_minmax_multipass_ukernel_fn avgpool_minmax, xnn_init_f32_scaleminmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
xnnpack::Buffer<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<float> input(XNN_EXTRA_BYTES / sizeof(float) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float), 0.0f);
xnnpack::Buffer<float> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
xnnpack::Buffer<float, XNN_ALLOCATION_ALIGNMENT> buffer(
XNN_EXTRA_BYTES / sizeof(float) + channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf(""));
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t p = 0; p < pooling_elements(); p++) {
const float* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += row[c + input_offset()];
}
}
output_ref[x * channels() + c] = acc / float(pooling_elements());
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
// Clamp reference results.
for (float& output_value : output_ref) {
output_value = std::max(std::min(output_value, output_max), output_min);
}
// Prepare parameters.
xnn_f32_scaleminmax_params params;
init_params(&params, 1.0f / float(pooling_elements()), output_min, output_max);
// Call optimized micro-kernel.
avgpool_minmax(output_pixels(), pooling_elements(), channels(),
indirect_input.data(), input_offset() * sizeof(float), zero.data(),
buffer.data(), output.data(),
(step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
(output_stride() - channels()) * sizeof(float),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(output[x * output_stride() + c], output_min)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(output[x * output_stride() + c], output_max)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(
output[x * output_stride() + c],
output_ref[x * channels() + c],
std::abs(output_ref[x * channels() + c]) * 1.0e-6f)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
void Test(
xnn_qu8_avgpool_minmax_unipass_ukernel_fn avgpool_minmax,
xnn_init_qu8_avgpool_minmax_params_fn init_params,
xnn_qu8_requantize_fn requantize) const
{
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
xnnpack::Buffer<const uint8_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t), 0);
xnnpack::Buffer<uint8_t> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<uint8_t> output_ref(output_pixels() * channels());
xnnpack::Buffer<float> output_real(output_pixels() * channels());
xnnpack::Buffer<int32_t> accumulator(output_pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
} while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
std::fill(input.begin(), input.begin() + input_offset(), UINT8_C(0xA5));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(uint8_t), input.end(), UINT8_C(0xA5));
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Prepare parameters.
xnn_qu8_avgpool_minmax_params params;
init_params(
&params,
-int32_t(input_zero_point()) * int32_t(pooling_elements()),
input_scale() / (output_scale() * float(pooling_elements())),
output_zero_point(), qmin(), qmax());
// Compute reference results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
int32_t acc = 0;
for (size_t p = 0; p < pooling_elements(); p++) {
const uint8_t* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += int32_t(row[c + input_offset()]);
}
acc -= int32_t(input_zero_point());
}
accumulator[x * channels() + c] = acc;
output_ref[x * channels() + c] = requantize(
acc, input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax());
const float scaled_acc =
float(acc) * input_scale() / (output_scale() * float(pooling_elements())) + float(output_zero_point());
output_real[x * channels() + c] = std::min(std::max(scaled_acc, float(qmin())), float(qmax()));
}
}
// Call optimized micro-kernel.
avgpool_minmax(output_pixels(), pooling_elements(), channels(),
indirect_input.data(), input_offset() * sizeof(uint8_t), zero.data(),
output.data(),
step() * sizeof(void*),
(output_stride() - channels()) * sizeof(uint8_t),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin()))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax()))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(float(int32_t(output[x * output_stride() + c])), output_real[x * channels() + c], 0.5f)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c];
EXPECT_EQ(uint32_t(output_ref[x * channels() + c]), uint32_t(output[x * output_stride() + c]))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c];
}
}
}
}
void Test(
xnn_qu8_avgpool_minmax_multipass_ukernel_fn avgpool_minmax,
xnn_init_qu8_avgpool_minmax_params_fn init_params,
xnn_qu8_requantize_fn requantize) const
{
xnnpack::ReplicableRandomDevice rng;
std::uniform_int_distribution<int32_t> u8dist(
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max());
xnnpack::Buffer<const uint8_t*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<uint8_t> zero(channels() + XNN_EXTRA_BYTES / sizeof(uint8_t), 0);
xnnpack::Buffer<uint8_t> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<uint8_t> output_ref(output_pixels() * channels());
xnnpack::Buffer<float> output_real(output_pixels() * channels());
xnnpack::Buffer<int32_t> accumulator(output_pixels() * channels());
xnnpack::Buffer<int32_t, XNN_ALLOCATION_ALIGNMENT> buffer(
XNN_EXTRA_BYTES / sizeof(uint8_t) + channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); });
} while (input.size() > 1 && *std::max_element(input.cbegin(), input.cend()) == *std::min_element(input.cbegin(), input.cend()));
std::fill(input.begin(), input.begin() + input_offset(), UINT8_C(0xA5));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(uint8_t), input.end(), UINT8_C(0xA5));
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Prepare parameters.
xnn_qu8_avgpool_minmax_params params;
init_params(
&params,
-int32_t(input_zero_point()) * int32_t(pooling_elements()),
input_scale() / (output_scale() * float(pooling_elements())),
output_zero_point(), qmin(), qmax());
// Compute reference results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
int32_t acc = 0;
for (size_t p = 0; p < pooling_elements(); p++) {
const uint8_t* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += int32_t(row[c + input_offset()]);
}
acc -= int32_t(input_zero_point());
}
accumulator[x * channels() + c] = acc;
output_ref[x * channels() + c] = requantize(
acc, input_scale() / (output_scale() * float(pooling_elements())), output_zero_point(), qmin(), qmax());
const float scaled_acc =
float(acc) * input_scale() / (output_scale() * float(pooling_elements())) + float(output_zero_point());
output_real[x * channels() + c] = std::min(std::max(scaled_acc, float(qmin())), float(qmax()));
}
}
// Call optimized micro-kernel.
avgpool_minmax(output_pixels(), pooling_elements(), channels(),
indirect_input.data(), input_offset() * sizeof(uint8_t), zero.data(),
buffer.data(), output.data(),
(step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
(output_stride() - channels()) * sizeof(uint8_t),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(uint32_t(output[x * output_stride() + c]), uint32_t(qmin()))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(uint32_t(output[x * output_stride() + c]), uint32_t(qmax()))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(float(int32_t(output[x * output_stride() + c])), output_real[x * channels() + c], 0.5f)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c];
EXPECT_EQ(uint32_t(output_ref[x * channels() + c]), uint32_t(output[x * output_stride() + c]))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset() << ", accumulator = " << accumulator[x * channels() + c];
}
}
}
}
void Test(xnn_f16_pavgpool_minmax_unipass_ukernel_fn pavgpool_minmax, xnn_init_f16_scaleminmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
std::uniform_real_distribution<float> m32dist(0.1f, 0.5f);
xnnpack::Buffer<const xnn_float16*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<xnn_float16> input(XNN_EXTRA_BYTES / sizeof(xnn_float16) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<xnn_float16> zero(channels() + XNN_EXTRA_BYTES / sizeof(xnn_float16), 0);
xnnpack::Buffer<xnn_float16> multiplier(output_pixels());
xnnpack::Buffer<xnn_float16> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(xnn_float16), input.end(), std::nanf(""));
std::generate(multiplier.begin(), multiplier.end(), [&]() { return m32dist(rng); });
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t p = 0; p < pooling_elements(); p++) {
const xnn_float16* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += row[c + input_offset()];
}
}
output_ref[x * channels() + c] = acc * multiplier[x];
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
float output_min_as_float = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
float output_max_as_float = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
const xnn_float16 output_min_as_half = static_cast<xnn_float16>(output_min_as_float);
const xnn_float16 output_max_as_half = static_cast<xnn_float16>(output_max_as_float);
output_min_as_float = output_min_as_half;
output_max_as_float = output_max_as_half;
// Clamp reference results.
for (float& output_value : output_ref) {
output_value = std::max(std::min(output_value, output_max_as_float), output_min_as_float);
}
// Prepare parameters.
xnn_f16_scaleminmax_params params;
init_params(&params, 0, output_min_as_half, output_max_as_half);
// Call optimized micro-kernel.
pavgpool_minmax(output_pixels(), pooling_elements(), channels(),
reinterpret_cast<const xnn_float16**>(indirect_input.data()), input_offset() * sizeof(xnn_float16), zero.data(),
multiplier.data(), output.data(),
step() * sizeof(void*),
(output_stride() - channels()) * sizeof(xnn_float16),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(output[x * output_stride() + c], output_min_as_float)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(output[x * output_stride() + c], output_max_as_float)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(
output[x * output_stride() + c],
output_ref[x * channels() + c],
std::max(1.0e-4f, std::abs(output_ref[x * channels() + c]) * 3.0e-3f))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
void Test(xnn_f16_pavgpool_minmax_multipass_ukernel_fn pavgpool_minmax, xnn_init_f16_scaleminmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
std::uniform_real_distribution<float> m32dist(0.1f, 0.5f);
xnnpack::Buffer<const xnn_float16*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<xnn_float16> input(XNN_EXTRA_BYTES / sizeof(xnn_float16) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<xnn_float16> zero(channels() + XNN_EXTRA_BYTES / sizeof(xnn_float16), 0);
xnnpack::Buffer<xnn_float16> multiplier(output_pixels());
xnnpack::Buffer<xnn_float16> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
xnnpack::Buffer<xnn_float16, XNN_ALLOCATION_ALIGNMENT> buffer(
XNN_EXTRA_BYTES / sizeof(xnn_float16) + channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(xnn_float16), input.end(), std::nanf(""));
std::generate(multiplier.begin(), multiplier.end(), [&]() { return m32dist(rng); });
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t p = 0; p < pooling_elements(); p++) {
const xnn_float16* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += row[c + input_offset()];
}
}
output_ref[x * channels() + c] = acc * multiplier[x];
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
float output_min_as_float = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
float output_max_as_float = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
const xnn_float16 output_min_as_half = static_cast<xnn_float16>(output_min_as_float);
const xnn_float16 output_max_as_half = static_cast<xnn_float16>(output_max_as_float);
output_min_as_float = output_min_as_half;
output_max_as_float = output_max_as_half;
// Clamp reference results.
for (float& output_value : output_ref) {
output_value = std::max(std::min(output_value, output_max_as_float), output_min_as_float);
}
// Prepare parameters.
xnn_f16_scaleminmax_params params;
init_params(&params, 0, output_min_as_half, output_max_as_half);
// Call optimized micro-kernel.
pavgpool_minmax(output_pixels(), pooling_elements(), channels(),
reinterpret_cast<const xnn_float16**>(indirect_input.data()), input_offset() * sizeof(xnn_float16), zero.data(),
multiplier.data(), buffer.data(), output.data(),
(step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
(output_stride() - channels()) * sizeof(xnn_float16),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(output[x * output_stride() + c], output_min_as_float)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(output[x * output_stride() + c], output_max_as_float)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(
output[x * output_stride() + c],
output_ref[x * channels() + c],
std::max(1.0e-4f, std::abs(output_ref[x * channels() + c]) * 3.0e-3f))
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
void Test(xnn_f32_pavgpool_minmax_unipass_ukernel_fn pavgpool_minmax, xnn_init_f32_minmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
std::uniform_real_distribution<float> m32dist(0.1f, 0.5f);
xnnpack::Buffer<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<float> input(XNN_EXTRA_BYTES / sizeof(float) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float), 0.0f);
xnnpack::Buffer<float> multiplier(output_pixels());
xnnpack::Buffer<float> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf(""));
std::generate(multiplier.begin(), multiplier.end(), [&]() { return m32dist(rng); });
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t p = 0; p < pooling_elements(); p++) {
const float* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += row[c + input_offset()];
}
}
output_ref[x * channels() + c] = acc * multiplier[x];
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
// Clamp reference results.
for (float& output_value : output_ref) {
output_value = std::max(std::min(output_value, output_max), output_min);
}
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, output_min, output_max);
// Call optimized micro-kernel.
pavgpool_minmax(output_pixels(), pooling_elements(), channels(),
indirect_input.data(), input_offset() * sizeof(float), zero.data(),
multiplier.data(), output.data(),
step() * sizeof(void*),
(output_stride() - channels()) * sizeof(float),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(output[x * output_stride() + c], output_min)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(output[x * output_stride() + c], output_max)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(
output[x * output_stride() + c],
output_ref[x * channels() + c],
std::abs(output_ref[x * channels() + c]) * 1.0e-6f)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
void Test(xnn_f32_pavgpool_minmax_multipass_ukernel_fn pavgpool_minmax, xnn_init_f32_minmax_params_fn init_params) const {
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
std::uniform_real_distribution<float> m32dist(0.1f, 0.5f);
xnnpack::Buffer<const float*> indirect_input((output_pixels() - 1) * step() + packed_pooling_elements());
xnnpack::Buffer<float> input(XNN_EXTRA_BYTES / sizeof(float) +
input_offset() + indirect_input.size() * channels());
xnnpack::Buffer<float> zero(channels() + XNN_EXTRA_BYTES / sizeof(float), 0.0f);
xnnpack::Buffer<float> multiplier(output_pixels());
xnnpack::Buffer<float> output((output_pixels() - 1) * output_stride() + channels());
xnnpack::Buffer<float> output_ref(output_pixels() * channels());
xnnpack::Buffer<float, XNN_ALLOCATION_ALIGNMENT> buffer(
XNN_EXTRA_BYTES / sizeof(float) + channels());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::fill(input.begin(), input.begin() + input_offset(), std::nanf(""));
std::fill(input.end() - XNN_EXTRA_BYTES / sizeof(float), input.end(), std::nanf(""));
std::generate(multiplier.begin(), multiplier.end(), [&]() { return m32dist(rng); });
for (size_t i = 0; i < (output_pixels() - 1) * step() + pooling_elements(); i++) {
indirect_input[i] = input.data() + i * channels();
}
std::shuffle(indirect_input.begin(),
indirect_input.begin() + (output_pixels() - 1) * step() + pooling_elements(), rng);
if (zero_index_mod2() != SIZE_MAX) {
for (size_t i = zero_index_mod2(); i < indirect_input.size(); i += 2) {
indirect_input[i] = zero.data();
}
}
// Compute reference results, without clamping.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
float acc = 0.0f;
for (size_t p = 0; p < pooling_elements(); p++) {
const float* row = indirect_input[x * step() + p];
if (row != zero.data()) {
acc += row[c + input_offset()];
}
}
output_ref[x * channels() + c] = acc * multiplier[x];
}
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
const float output_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
// Clamp reference results.
for (float& output_value : output_ref) {
output_value = std::max(std::min(output_value, output_max), output_min);
}
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, output_min, output_max);
// Call optimized micro-kernel.
pavgpool_minmax(output_pixels(), pooling_elements(), channels(),
indirect_input.data(), input_offset() * sizeof(float), zero.data(),
multiplier.data(), buffer.data(), output.data(),
(step() - (packed_pooling_elements() - incremental_pooling_tile())) * sizeof(void*),
(output_stride() - channels()) * sizeof(float),
&params);
// Verify results.
for (size_t x = 0; x < output_pixels(); x++) {
for (size_t c = 0; c < channels(); c++) {
EXPECT_GE(output[x * output_stride() + c], output_min)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_LE(output[x * output_stride() + c], output_max)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
EXPECT_NEAR(
output[x * output_stride() + c],
output_ref[x * channels() + c],
std::abs(output_ref[x * channels() + c]) * 1.0e-6f)
<< "at pixel " << x << " / " << output_pixels() << ", channel " << c << " / " << channels()
<< ", pooling elements = " << pooling_elements() << ", step = " << step()
<< ", input offset = " << input_offset();
}
}
}
}
struct Kernel {
explicit Kernel(xnn_f16_avgpool_minmax_unipass_ukernel_fn fn, xnn_init_f16_scaleminmax_params_fn init) {
dispatch = [fn, init](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init); };
}
explicit Kernel(xnn_f16_avgpool_minmax_multipass_ukernel_fn fn, xnn_init_f16_scaleminmax_params_fn init) {
dispatch = [fn, init](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init); };
}
explicit Kernel(xnn_f16_pavgpool_minmax_unipass_ukernel_fn fn, xnn_init_f16_scaleminmax_params_fn init) {
dispatch = [fn, init](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init); };
}
explicit Kernel(xnn_f16_pavgpool_minmax_multipass_ukernel_fn fn, xnn_init_f16_scaleminmax_params_fn init) {
dispatch = [fn, init](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init); };
}
explicit Kernel(xnn_f32_avgpool_minmax_unipass_ukernel_fn fn, xnn_init_f32_scaleminmax_params_fn init) {
dispatch = [fn, init](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init); };
}
explicit Kernel(xnn_f32_avgpool_minmax_multipass_ukernel_fn fn, xnn_init_f32_scaleminmax_params_fn init) {
dispatch = [fn, init](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init); };
}
explicit Kernel(xnn_f32_pavgpool_minmax_unipass_ukernel_fn fn, xnn_init_f32_minmax_params_fn init) {
dispatch = [fn, init](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init); };
}
explicit Kernel(xnn_f32_pavgpool_minmax_multipass_ukernel_fn fn, xnn_init_f32_minmax_params_fn init) {
dispatch = [fn, init](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init); };
}
explicit Kernel(xnn_qu8_avgpool_minmax_unipass_ukernel_fn fn, xnn_init_qu8_avgpool_minmax_params_fn init, xnn_qu8_requantize_fn requantize) {
dispatch = [fn, init, requantize](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init, requantize); };
}
explicit Kernel(xnn_qu8_avgpool_minmax_multipass_ukernel_fn fn, xnn_init_qu8_avgpool_minmax_params_fn init, xnn_qu8_requantize_fn requantize) {
dispatch = [fn, init, requantize](const AvgPoolMicrokernelTester& tester) { tester.Test(fn, init, requantize); };
}
std::function<void(const AvgPoolMicrokernelTester&)> dispatch;
};
void Test(const Kernel& kernel) const {
kernel.dispatch(*this);
}
private:
size_t output_pixels_{1};
size_t pooling_elements_{1};
size_t channels_{1};
size_t input_offset_{0};
size_t zero_index_mod2_{SIZE_MAX};
size_t step_{1};
size_t primary_pooling_tile_{1};
size_t incremental_pooling_tile_{1};
size_t output_stride_{0};
float input_scale_{1.25f};
float output_scale_{0.75f};
uint8_t input_zero_point_{121};
uint8_t output_zero_point_{133};
uint8_t qmin_{0};
uint8_t qmax_{255};
size_t iterations_{3};
};