621 lines
20 KiB
C++
621 lines
20 KiB
C++
// Auto-generated file. Do not edit!
|
|
// Template: test/f16-simd.cc.in
|
|
// Generator: tools/xngen
|
|
//
|
|
// Copyright 2024 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
#include "xnnpack/isa-checks.h"
|
|
#include "xnnpack/simd/f16-scalar.h"
|
|
#include "xnnpack/fp16.h"
|
|
#include "replicable_random_device.h"
|
|
|
|
namespace xnnpack {
|
|
|
|
class F16SimdSCALARTest : public ::testing::Test {
|
|
protected:
|
|
void SetUp() override {
|
|
inputs_.resize(3 * xnn_simd_size_f16);
|
|
output_.resize(xnn_simd_size_f16);
|
|
std::uniform_real_distribution<float> f32dist(-10.0f, 10.0f);
|
|
std::generate(inputs_.begin(), inputs_.end(),
|
|
[&]() { return fp16_ieee_from_fp32_value(f32dist(rng_)); });
|
|
}
|
|
|
|
static std::vector<float> ToFloat32(const std::vector<uint16_t> &values) {
|
|
std::vector<float> result;
|
|
result.reserve(values.size());
|
|
for (const uint16_t &value : values) {
|
|
result.push_back(fp16_ieee_to_fp32_value(value));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static float TruncToF16(float value) {
|
|
return fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(value));
|
|
}
|
|
|
|
xnnpack::ReplicableRandomDevice rng_;
|
|
std::vector<uint16_t> inputs_;
|
|
std::vector<uint16_t> output_;
|
|
};
|
|
|
|
TEST_F(F16SimdSCALARTest, SetZero) {
|
|
xnn_storeu_f16(output_.data(), xnn_zero_f16());
|
|
EXPECT_THAT(ToFloat32(output_), testing::Each(testing::Eq(0.0f)));
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Add) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_add_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k],
|
|
TruncToF16(inputs_f32[k] + inputs_f32[k + xnn_simd_size_f16]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Mul) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_mul_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k],
|
|
TruncToF16(inputs_f32[k] * inputs_f32[k + xnn_simd_size_f16]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Fmadd) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t c =
|
|
xnn_loadu_f16(inputs_.data() + 2 * xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_fmadd_f16(a, b, c);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k],
|
|
TruncToF16(inputs_f32[k] * inputs_f32[k + xnn_simd_size_f16] +
|
|
inputs_f32[k + 2 * xnn_simd_size_f16]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Fmsub) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t c =
|
|
xnn_loadu_f16(inputs_.data() + 2 * xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_fmsub_f16(a, b, c);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k],
|
|
TruncToF16(inputs_f32[k] * inputs_f32[k + xnn_simd_size_f16] -
|
|
inputs_f32[k + 2 * xnn_simd_size_f16]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Fnmadd) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t c =
|
|
xnn_loadu_f16(inputs_.data() + 2 * xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_fnmadd_f16(a, b, c);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k],
|
|
TruncToF16(-inputs_f32[k] * inputs_f32[k + xnn_simd_size_f16] +
|
|
inputs_f32[k + 2 * xnn_simd_size_f16]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Sub) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_sub_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k],
|
|
TruncToF16(inputs_f32[k] - inputs_f32[k + xnn_simd_size_f16]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Div) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_div_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_NEAR(output_f32[k],
|
|
inputs_f32[k] / inputs_f32[k + xnn_simd_size_f16],
|
|
2 * 9.77e-04 * std::abs(output_f32[k]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Max) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_max_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k],
|
|
std::max(inputs_f32[k], inputs_f32[k + xnn_simd_size_f16]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Min) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_min_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k],
|
|
std::min(inputs_f32[k], inputs_f32[k + xnn_simd_size_f16]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Abs) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t res = xnn_abs_f16(a);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k], std::abs(inputs_f32[k]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Neg) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t res = xnn_neg_f16(a);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k], -inputs_f32[k]);
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, And) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_and_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] & inputs_[k + xnn_simd_size_f16]);
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Or) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_or_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] | inputs_[k + xnn_simd_size_f16]);
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, Xor) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_xor_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] ^ inputs_[k + xnn_simd_size_f16]);
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, ShiftLeft) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
// Not using a loop since the `bits` parameter needs to be a compile-time
|
|
// constant, e.g. for `neon`.
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 1);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 1) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 2);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 2) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 3);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 3) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 4);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 4) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 5);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 5) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 6);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 6) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 7);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 7) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 8);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 8) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 9);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 9) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 10);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 10) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 11);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 11) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 12);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 12) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 13);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 13) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 14);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 14) & 0xFFFF);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sll_f16(a, 15);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], (inputs_[k] << 15) & 0xFFFF);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, ShiftRight) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
// Not using a loop since the `bits` parameter needs to be a compile-time
|
|
// constant, e.g. for `neon`.
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 1);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 1);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 2);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 2);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 3);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 3);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 4);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 4);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 5);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 5);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 6);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 6);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 7);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 7);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 8);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 8);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 9);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 9);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 10);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 10);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 11);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 11);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 12);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 12);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 13);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 13);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 14);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 14);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_srl_f16(a, 15);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 15);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, ShiftRightSigned) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
// Not using a loop since the `bits` parameter needs to be a compile-time
|
|
// constant, e.g. for `neon`.
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 1);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 1);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 2);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 2);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 3);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 3);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 4);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 4);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 5);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 5);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 6);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 6);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 7);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 7);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 8);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 8);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 9);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 9);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 10);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 10);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 11);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 11);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 12);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 12);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 13);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 13);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 14);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 14);
|
|
}
|
|
}
|
|
{
|
|
const xnn_simd_f16_t res = xnn_sra_f16(a, 15);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k], inputs_[k] >> 15);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, CmpEq) {
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
if (rng_() & 1) {
|
|
inputs_[k + xnn_simd_size_f16] = inputs_[k];
|
|
}
|
|
}
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t b = xnn_loadu_f16(inputs_.data() + xnn_simd_size_f16);
|
|
const xnn_simd_f16_t res = xnn_cmpeq_f16(a, b);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_[k],
|
|
inputs_[k] == inputs_[k + xnn_simd_size_f16] ? 0xFFFF : 0);
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, GetExp) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
const xnn_simd_f16_t res = xnn_getexp_f16(a);
|
|
xnn_storeu_f16(output_.data(), res);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t k = 0; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k], std::logb(inputs_f32[k]));
|
|
}
|
|
}
|
|
|
|
TEST_F(F16SimdSCALARTest, StoreTail) {
|
|
const xnn_simd_f16_t a = xnn_loadu_f16(inputs_.data());
|
|
std::vector<float> inputs_f32 = ToFloat32(inputs_);
|
|
for (size_t num_elements = 1; num_elements < xnn_simd_size_f16;
|
|
num_elements++) {
|
|
xnn_store_tail_f16(output_.data(), a, num_elements);
|
|
std::vector<float> output_f32 = ToFloat32(output_);
|
|
for (size_t k = 0; k < num_elements; k++) {
|
|
ASSERT_EQ(output_f32[k], inputs_f32[k]);
|
|
}
|
|
for (size_t k = num_elements; k < xnn_simd_size_f16; k++) {
|
|
ASSERT_EQ(output_f32[k], fp16_ieee_from_fp32_value(0.0f));
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace xnnpack
|
|
|