sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/rope.cc

371 lines
16 KiB
C++

// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm> // For std::generate, std::min.
#include <array> // For std::array.
#include <cmath> // For std::lrintf.
#include <cstddef> // For size_t.
#include <cstdint> // For uint32_t.
#include <memory> // For std::unique_ptr.
#include <random> // For std::uniform_real_distribution.
#include <vector> // For std::vector.
#include <gtest/gtest.h>
#include "xnnpack.h"
#include "xnnpack/math.h"
#include "xnnpack/node-type.h"
#include "xnnpack/operator.h"
#include "xnnpack/subgraph.h"
#include "xnnpack/buffer.h"
#include "replicable_random_device.h"
template <class T> class RoPETestBase : public ::testing::Test {
protected:
RoPETestBase() {
f32dist = std::uniform_real_distribution<float>(0.1f, 1.0f);
dim_dist = std::uniform_int_distribution<size_t>(5, 15);
batch_size = dim_dist(rng);
tokens = dim_dist(rng);
do {
max_tokens = dim_dist(rng);
} while (max_tokens < tokens);
heads = dim_dist(rng);
channels = dim_dist(rng) * 2; // ensure the number of channels is even
input = xnnpack::Buffer<T>(XNN_EXTRA_BYTES / sizeof(T) +
batch_size * tokens * heads * channels);
weights =
xnnpack::Buffer<T>(XNN_EXTRA_BYTES / sizeof(T) + max_tokens * channels);
operator_output = xnnpack::Buffer<T>(batch_size * tokens * heads * channels);
subgraph_output = xnnpack::Buffer<T>(operator_output.size());
}
xnnpack::ReplicableRandomDevice rng;
std::uniform_real_distribution<float> f32dist;
std::uniform_int_distribution<size_t> dim_dist;
size_t batch_size;
size_t max_tokens;
size_t tokens;
size_t heads;
size_t channels;
xnnpack::Buffer<T> input;
xnnpack::Buffer<T> weights;
xnnpack::Buffer<T> operator_output;
xnnpack::Buffer<T> subgraph_output;
};
using RoPETestF16 = RoPETestBase<xnn_float16>;
using RoPETestF32 = RoPETestBase<float>;
TEST_F(RoPETestF16, define)
{
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> input_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp16, input_dims.size(), input_dims.data(),
/*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
uint32_t weights_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 2> weights_dims{{max_tokens, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp16, weights_dims.size(), weights_dims.data(),
weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id));
uint32_t output_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> output_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(), nullptr,
/*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(xnn_status_success,
xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0));
ASSERT_EQ(subgraph->num_nodes, 1);
const struct xnn_node* node = &subgraph->nodes[0];
ASSERT_EQ(node->type, xnn_node_type_rope);
ASSERT_EQ(node->num_inputs, 2);
ASSERT_EQ(node->inputs[0], input_id);
ASSERT_EQ(node->inputs[1], weights_id);
ASSERT_EQ(node->num_outputs, 1);
ASSERT_EQ(node->outputs[0], output_id);
ASSERT_EQ(node->flags, 0);
}
TEST_F(RoPETestF32, define)
{
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> input_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(),
/*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
uint32_t weights_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 2> weights_dims{{max_tokens, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp32, weights_dims.size(), weights_dims.data(),
weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id));
uint32_t output_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> output_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr,
/*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(xnn_status_success,
xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0));
ASSERT_EQ(subgraph->num_nodes, 1);
const struct xnn_node* node = &subgraph->nodes[0];
ASSERT_EQ(node->type, xnn_node_type_rope);
ASSERT_EQ(node->num_inputs, 2);
ASSERT_EQ(node->inputs[0], input_id);
ASSERT_EQ(node->inputs[1], weights_id);
ASSERT_EQ(node->num_outputs, 1);
ASSERT_EQ(node->outputs[0], output_id);
ASSERT_EQ(node->flags, 0);
}
TEST_F(RoPETestF16, matches_operator_api)
{
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
xnn_operator_t op = nullptr;
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(weights.begin(), weights.end(), [&]() { return f32dist(rng); });
const xnn_status status = xnn_create_rope_nthc_f16(/*flags=*/0, &op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, op);
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_reshape_rope_nthc_f16(op,
batch_size, tokens, heads, channels,
/*threadpool=*/nullptr));
ASSERT_EQ(xnn_status_success,
xnn_setup_rope_nthc_f16(op,
input.data(), weights.data(), operator_output.data()));
ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
// Call subgraph API.
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> input_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp16, input_dims.size(), input_dims.data(),
/*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
uint32_t weights_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 2> weights_dims{{max_tokens, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp16, weights_dims.size(), weights_dims.data(),
weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id));
uint32_t output_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> output_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp16, output_dims.size(), output_dims.data(),
/*data=*/nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(xnn_status_success,
xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0));
xnn_runtime_t runtime = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
ASSERT_NE(nullptr, runtime);
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
const std::array<xnn_external_value, 2> external{{
xnn_external_value{input_id, input.data()},
xnn_external_value{output_id, subgraph_output.data()}
}};
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
// Check outputs match.
for (size_t i = 0; i < operator_output.size(); i++) {
ASSERT_EQ(subgraph_output[i], operator_output[i]);
}
}
TEST_F(RoPETestF32, matches_operator_api)
{
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
xnn_operator_t op = nullptr;
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); });
std::generate(weights.begin(), weights.end(), [&]() { return f32dist(rng); });
const xnn_status status = xnn_create_rope_nthc_f32(/*flags=*/0, &op);
if (status == xnn_status_unsupported_hardware) {
GTEST_SKIP();
}
ASSERT_EQ(xnn_status_success, status);
ASSERT_NE(nullptr, op);
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator);
ASSERT_EQ(xnn_status_success,
xnn_reshape_rope_nthc_f32(op,
batch_size, tokens, heads, channels,
/*threadpool=*/nullptr));
ASSERT_EQ(xnn_status_success,
xnn_setup_rope_nthc_f32(op,
input.data(), weights.data(), operator_output.data()));
ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr));
// Call subgraph API.
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> input_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(),
/*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
uint32_t weights_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 2> weights_dims{{max_tokens, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp32, weights_dims.size(), weights_dims.data(),
weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id));
uint32_t output_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> output_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(),
/*data=*/nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(xnn_status_success,
xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0));
xnn_runtime_t runtime = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
ASSERT_NE(nullptr, runtime);
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
const std::array<xnn_external_value, 2> external{{
xnn_external_value{input_id, input.data()},
xnn_external_value{output_id, subgraph_output.data()}
}};
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
// Check outputs match.
for (size_t i = 0; i < operator_output.size(); i++) {
ASSERT_EQ(subgraph_output[i], operator_output[i]);
}
}
TEST_F(RoPETestF32, reshape_output)
{
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr));
xnn_subgraph_t subgraph = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(3, /*flags=*/0, &subgraph));
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph);
uint32_t input_id = XNN_INVALID_NODE_ID;
std::array<size_t, 4> input_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(),
/*data=*/nullptr, /*external_id=*/0, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id));
ASSERT_NE(input_id, XNN_INVALID_NODE_ID);
uint32_t weights_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 2> weights_dims{{max_tokens, channels}};
ASSERT_EQ(xnn_status_success,
xnn_define_tensor_value(subgraph, xnn_datatype_fp32, weights_dims.size(), weights_dims.data(),
weights.data(), /*external_id=*/1, /*flags=*/0, &weights_id));
uint32_t output_id = XNN_INVALID_NODE_ID;
const std::array<size_t, 4> output_dims{{batch_size, tokens, heads, channels}};
ASSERT_EQ(
xnn_status_success, xnn_define_tensor_value(
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(),
/*data=*/nullptr, /*external_id=*/2, /*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id));
ASSERT_NE(output_id, XNN_INVALID_NODE_ID);
ASSERT_EQ(xnn_status_success,
xnn_define_rope(subgraph, max_tokens, input_id, weights_id, output_id, /*flags=*/0));
xnn_runtime_t runtime = nullptr;
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime));
ASSERT_NE(nullptr, runtime);
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime);
const std::array<xnn_external_value, 2> external{{
xnn_external_value{input_id, input.data()},
xnn_external_value{output_id, subgraph_output.data()}
}};
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data()));
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime));
input_dims[0] += 4;
input_dims[2] += 4;
input_dims[3] += 4;
ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, input_dims.size(), input_dims.data()));
const struct xnn_node* node = &subgraph->nodes[0];
ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required);
const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape;
for (size_t i = 0; i < input_dims.size(); ++i) {
ASSERT_EQ(output_shape->dim[i], input_dims[i]);
}
input_dims[3] -= 4;
ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, input_id, input_dims.size(), input_dims.data()));
ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_success);
for (size_t i = 0; i < input_dims.size(); ++i) {
ASSERT_EQ(output_shape->dim[i], input_dims[i]);
}
}