sglang_v0.5.2/pytorch_2.8.0/third_party/XNNPACK/test/s16-simd.cc.in

64 lines
1.6 KiB
C++

// Copyright 2024 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$TESTNAME = f"S16Simd{ARCH.upper()}Test"
$if ARCH_MACRO:
// This header needs to go first for the arch test macros.
#include "xnnpack/common.h"
#if ${ARCH_MACRO}
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <random>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "xnnpack/isa-checks.h"
#include "xnnpack/simd/s16-${ARCH}.h"
#include "replicable_random_device.h"
namespace xnnpack {
class ${TESTNAME} : public ::testing::Test {
protected:
void SetUp() override {
$if TEST_REQUIRES:
${TEST_REQUIRES};
inputs_.resize(3 * xnn_simd_size_s16);
output_.resize(xnn_simd_size_s16);
std::uniform_int_distribution<int16_t> s16(-100, 100);
std::generate(inputs_.begin(), inputs_.end(),
[&]() { return s16(rng_); });
}
xnnpack::ReplicableRandomDevice rng_;
std::vector<int16_t> inputs_;
std::vector<int16_t> output_;
};
TEST_F(${TESTNAME}, StoreTail) {
const xnn_simd_s16_t a = xnn_loadu_s16(inputs_.data());
for (size_t num_elements = 1; num_elements < xnn_simd_size_s16;
num_elements++) {
xnn_store_tail_s16(output_.data(), a, num_elements);
for (size_t k = 0; k < num_elements; k++) {
ASSERT_EQ(output_[k], inputs_[k]) << " " << k;
}
for (size_t k = num_elements; k < xnn_simd_size_s16; k++) {
ASSERT_EQ(output_[k], 0.0f);
}
}
}
} // namespace xnnpack
$if ARCH_MACRO:
#endif // ${ARCH_MACRO}