sglang_v0.5.2/pytorch_2.8.0/third_party/fbgemm/test/I8SpmdmTest.cc

158 lines
3.9 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <random>
#include <gtest/gtest.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "./TestUtils.h"
#include "bench/BenchUtils.h"
#include "fbgemm/FbgemmI8Spmdm.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
std::vector<float> densities{0.0001f, 0.001f, 0.01f, 0.1f, 1.0f};
namespace {
class fbgemmSPMDMTest
: public testing::TestWithParam<std::tuple<float, bool, bool>> {};
} // namespace
INSTANTIATE_TEST_CASE_P(
Instance0,
fbgemmSPMDMTest,
::testing::Combine(
::testing::ValuesIn(densities),
::testing::Bool(),
::testing::Bool()));
TEST_P(fbgemmSPMDMTest, TestsSpMDM) {
const vector<array<int, 3>> shapes = {
// M, N, K
{1024, 1024, 1024},
{511, 512, 512},
{111, 111, 111},
{14 * 14 * 2, 4, 2},
};
float density;
bool accumulation, test_ld;
tie(density, accumulation, test_ld) = GetParam();
for (const auto& shape : shapes) {
int M = shape[0];
int N = shape[1];
int K = shape[2];
int N_adjusted = N;
int K_adjusted = K;
if (test_ld) {
// When test_ld is true, we multiply with the bottom-right quadrant of B
N_adjusted = std::max(N / 2, 1);
K_adjusted = std::max(K / 2, 1);
}
aligned_vector<uint8_t> A(M * K);
randFill<uint8_t>(A, 0, 255);
CompressedSparseColumn B_csc(K_adjusted, N_adjusted);
vector<int32_t> C(M * N);
vector<int32_t> C_ref(C.size());
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
C_ref[i * N + j] = i + j;
}
}
// deterministic random number
random_device r;
default_random_engine eng(r());
binomial_distribution<> per_col_nnz_dist(K_adjusted, density);
uniform_int_distribution<> value_dist(
numeric_limits<int8_t>::min() / 2, numeric_limits<int8_t>::max() / 2);
vector<int> row_indices(K_adjusted);
int total_nnz = 0;
for (int j = 0; j < N_adjusted; ++j) {
B_csc.ColPtr()[j] = total_nnz;
int nnz_of_j = per_col_nnz_dist(eng);
total_nnz += nnz_of_j;
iota(row_indices.begin(), row_indices.end(), 0);
shuffle(row_indices.begin(), row_indices.end(), eng);
sort(row_indices.begin(), row_indices.begin() + nnz_of_j);
for (int k = 0; k < nnz_of_j; ++k) {
B_csc.RowIdx().push_back(row_indices[k]);
B_csc.Values().push_back(value_dist(eng));
}
}
B_csc.ColPtr()[N_adjusted] = total_nnz;
spmdm_ref(
M,
A.data() + (test_ld ? K_adjusted : 0),
K,
B_csc,
accumulation,
C_ref.data() + (test_ld ? N_adjusted : 0),
N);
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
if (accumulation) {
C[i * N + j] = i + j;
} else {
C[i * N + j] = i + j + 1;
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
int i_per_thread = (M + num_threads - 1) / num_threads;
int i_begin = std::min(tid * i_per_thread, M);
int i_end = std::min(i_begin + i_per_thread, M);
block_type_t block = {i_begin, i_end - i_begin, 0, N_adjusted};
B_csc.SpMDM(
block,
A.data() + (test_ld ? K_adjusted : 0),
K,
accumulation,
C.data() + i_begin * N + (test_ld ? N_adjusted : 0),
N);
}
compare_validate_buffers(
C_ref.data() + (test_ld ? N_adjusted : 0),
C.data() + (test_ld ? N_adjusted : 0),
M,
N_adjusted,
N,
static_cast<int32_t>(0));
} // for each shape
}