sglang_v0.5.2/pytorch_2.8.0/third_party/fbgemm/test/PackedRequantizeAcc16Test.cc

922 lines
27 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cpuinfo.h>
#include <algorithm>
#include <chrono>
#include <cmath>
#include <numeric>
#include <random>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
#include <gtest/gtest.h>
#include "./QuantizationHelpers.h"
#include "./TestUtils.h"
#include "bench/BenchUtils.h"
#include "fbgemm/Fbgemm.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
vector<matrix_op_t> transposeVals{
matrix_op_t::NoTranspose,
matrix_op_t::Transpose};
vector<QuantizationGranularity> qGranularityVals{
QuantizationGranularity::TENSOR,
QuantizationGranularity::GROUP,
QuantizationGranularity::OUT_CHANNEL};
namespace {
class fbgemmu8s8acc16WithQuantGranularityTest
: public testing::TestWithParam<
tuple<matrix_op_t, matrix_op_t, bool, QuantizationGranularity>> {};
class fbgemmu8s8acc16Test
: public testing::TestWithParam<tuple<matrix_op_t, matrix_op_t, bool>> {};
class fbgemmPackUnpackAcc16Test
: public testing::TestWithParam<tuple<matrix_op_t, bool>> {};
}; // namespace
INSTANTIATE_TEST_CASE_P(
InstantiationName,
fbgemmu8s8acc16WithQuantGranularityTest,
::testing::Combine(
::testing::Values(matrix_op_t::NoTranspose),
::testing::ValuesIn(transposeVals),
::testing::Bool(),
::testing::ValuesIn(qGranularityVals)));
INSTANTIATE_TEST_CASE_P(
InstantiationName,
fbgemmu8s8acc16Test,
::testing::Combine(
::testing::Values(matrix_op_t::NoTranspose),
::testing::ValuesIn(transposeVals),
::testing::Bool()));
INSTANTIATE_TEST_CASE_P(
InstantiationName,
fbgemmPackUnpackAcc16Test,
::testing::Combine(::testing::ValuesIn(transposeVals), ::testing::Bool()));
/**
* @brief Shapes for unit test.
*/
static vector<vector<int>> GetShapes_() {
// clang-format off
// NMT
vector<vector<int>> shapes = {
// {M, N, K}
{1, 128, 512},
{1, 1024, 256},
{1, 2048, 512},
{1, 2048, 513},
{1, 2048, 514},
{6, 512, 512},
{6, 2048, 512},
{6, 256, 1024},
{6, 1024, 256},
{6, 2048, 256},
{6, 2048, 257},
{6, 2048, 258},
{102, 1024, 512},
{102, 2323, 256},
{102, 512, 256},
{102, 512, 257},
{102, 512, 258},
{1024, 512, 258},
{120, 4, 288},
};
// clang-format on
return shapes;
}
/**
* @brief Unit test for uint8 matrix A, int8 matrix B, and 16-bit
* accumulation. Output processing: requantization -> nothing
*/
TEST_P(fbgemmu8s8acc16WithQuantGranularityTest, Test) {
cpuinfo_initialize();
if (fbgemmHasAvx512VnniSupport()) {
// No need to use acc16 if VNNI is available
return;
}
vector<vector<int>> shapes(GetShapes_());
matrix_op_t atrans, btrans;
bool test_ld;
QuantizationGranularity q_granularity;
tie(atrans, btrans, test_ld, q_granularity) = GetParam();
for (auto shape : shapes) {
for (int groups : {1, 3, 4}) {
int m = shape[0];
int n = shape[1];
int k = shape[2];
if (k % groups != 0) {
continue;
}
int k_per_group = k / groups;
aligned_vector<uint8_t> Aint8(m * k);
aligned_vector<int8_t> Bint8_ref(k * n);
aligned_vector<int32_t> Cint32_ref(m * n * groups);
aligned_vector<uint8_t> Cint8_ref(Cint32_ref.size());
aligned_vector<int32_t> Cint32_fb(Cint32_ref.size());
aligned_vector<uint8_t> Cint8_fb(Cint32_ref.size());
aligned_vector<int32_t> Cint32_buffer(Cint32_ref.size());
randFill<uint8_t>(Aint8, 0, 255);
int32_t Aint8_zero_point = 43;
randFill<int8_t>(Bint8_ref, -128, 127);
aligned_vector<int8_t> Bint8(Bint8_ref);
if (btrans == matrix_op_t::Transpose) {
aligned_vector<int8_t> Bint8_temp(Bint8.size());
for (int g = 0; g < groups; ++g) {
transpose_matrix(
k_per_group,
n,
Bint8.data() + g * k_per_group * n,
n,
Bint8_temp.data() + g * k_per_group * n,
k_per_group);
}
Bint8 = Bint8_temp;
}
// To test lda != k , we just reduce k by half and use the original k
// as lda.
int n_adjusted = n;
if (test_ld) {
assert(
atrans == matrix_op_t::NoTranspose &&
"This case is not handled yet");
if (btrans == matrix_op_t::NoTranspose) {
n_adjusted = std::max(n / 2, 1);
}
}
int ncols_per_quant_group = groups * n_adjusted;
if (q_granularity == QuantizationGranularity::GROUP) {
ncols_per_quant_group = n_adjusted;
} else if (q_granularity == QuantizationGranularity::OUT_CHANNEL) {
ncols_per_quant_group = 1;
}
aligned_vector<int32_t> Bint8_zero_point(
groups * n_adjusted / ncols_per_quant_group);
randFill(Bint8_zero_point, -60, 0);
// computing column offset
vector<int32_t> col_offsets(groups * n_adjusted);
for (int g = 0; g < groups; ++g) {
col_offsets_with_zero_pt_s8acc32_ref(
k_per_group,
n_adjusted,
n,
Bint8_ref.data() + g * k_per_group * n,
Bint8_zero_point.data() + g * n_adjusted / ncols_per_quant_group,
col_offsets.data() + g * n_adjusted,
ncols_per_quant_group);
}
vector<int32_t> row_offsets(m);
aligned_vector<float> C_multiplier(Bint8_zero_point.size());
randFill(C_multiplier, 0.001234f / 2, 0.001234f * 3 / 2);
int32_t C_zero_pt = 5;
int brow = 256;
for (int g = 0; g < groups; ++g) {
matmul_u8i8acc16_ref(
m,
n_adjusted,
k_per_group,
k,
n,
groups * n,
brow,
Aint8.data() + g * k_per_group,
Bint8_ref.data() + g * k_per_group * n,
Cint32_ref.data() + g * n_adjusted);
row_offsets_u8acc32_ref(
m,
k_per_group,
k,
Aint8.data() + g * k_per_group,
row_offsets.data());
requantize_u8acc32_ref(
m,
n_adjusted,
groups * n,
Cint32_ref.data() + g * n_adjusted,
Cint8_ref.data() + g * n_adjusted,
C_multiplier.data() + g * n_adjusted / ncols_per_quant_group,
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data() + g * n_adjusted / ncols_per_quant_group,
row_offsets.data(),
col_offsets.data() + g * n_adjusted,
nullptr,
ncols_per_quant_group);
}
PackBMatrix<int8_t, int16_t> packedBN(
btrans,
k,
n_adjusted,
Bint8.data(),
(btrans == matrix_op_t::Transpose) ? k_per_group : n,
nullptr,
groups);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
vector<int32_t> row_offset_buf(
PackAWithRowOffset<uint8_t, int16_t>::rowOffsetBufferSize());
PackAWithRowOffset<uint8_t, int16_t> packAN(
matrix_op_t::NoTranspose,
m,
k,
Aint8.data(),
k,
nullptr,
groups,
row_offset_buf.data());
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
DoNothing<> doNothingObj{};
if (q_granularity == QuantizationGranularity::TENSOR) {
ReQuantizeOutput<false> outputProcObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
packAN.getRowOffsetBuffer(),
col_offsets.data(),
nullptr,
groups * n_adjusted,
groups);
fbgemmPacked(
packAN,
packedBN,
Cint8_fb.data(),
Cint32_buffer.data(),
groups * n,
outputProcObj,
tid,
num_threads);
} else if (q_granularity == QuantizationGranularity::GROUP) {
ReQuantizeOutput<false, QuantizationGranularity::GROUP> outputProcObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
packAN.getRowOffsetBuffer(),
col_offsets.data(),
nullptr,
groups * n_adjusted,
groups);
fbgemmPacked(
packAN,
packedBN,
Cint8_fb.data(),
Cint32_buffer.data(),
groups * n,
outputProcObj,
tid,
num_threads);
} else {
ReQuantizeOutput<false, QuantizationGranularity::OUT_CHANNEL>
outputProcObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
packAN.getRowOffsetBuffer(),
col_offsets.data(),
nullptr,
groups * n_adjusted,
groups);
fbgemmPacked(
packAN,
packedBN,
Cint8_fb.data(),
Cint32_buffer.data(),
groups * n,
outputProcObj,
tid,
num_threads);
}
} // omp parallel
compare_validate_buffers(
Cint8_ref.data(),
Cint8_fb.data(),
m,
groups * n_adjusted,
groups * n,
static_cast<uint8_t>(0));
} // for each groups
} // for each shape
}
/**
* @brief Unit test for uint8 matrix A, int8 matrix B, and 16-bit
* accumulation. Output processing: spmdm -> requantization -> nothing
*/
TEST_P(fbgemmu8s8acc16WithQuantGranularityTest, SpMDMTest) {
cpuinfo_initialize();
if (fbgemmHasAvx512VnniSupport()) {
// No need to use acc16 if VNNI is available
return;
}
vector<vector<int>> shapes(GetShapes_());
matrix_op_t atrans, btrans;
bool test_ld;
QuantizationGranularity q_granularity;
tie(atrans, btrans, test_ld, q_granularity) = GetParam();
for (auto shape : shapes) {
for (int groups : {1, 3, 4}) {
// very small density to test hyper sparsity case
// moderate density to test the implementation using transpose
for (float density : {0.0001f, 0.1f}) {
int m = shape[0];
int n = shape[1];
int k = shape[2];
if (k % groups != 0) {
continue;
}
int k_per_group = k / groups;
aligned_vector<uint8_t> Aint8(m * k);
aligned_vector<int8_t> Bint8(k * n);
aligned_vector<int32_t> Cint32_ref(m * n * groups);
aligned_vector<uint8_t> Cint8_ref(Cint32_ref.size());
aligned_vector<int32_t> Cint32_fb(Cint32_ref.size());
aligned_vector<uint8_t> Cint8_fb(Cint32_ref.size());
aligned_vector<int32_t> Cint32_buffer(Cint32_ref.size());
randFill<uint8_t>(Aint8, 0, 255);
int32_t Aint8_zero_point = 43;
randFill<int8_t>(Bint8, -128, 127);
// To test lda != k , we just reduce k by half and use the original k
// as lda.
int n_adjusted = n;
if (test_ld) {
assert(
atrans == matrix_op_t::NoTranspose &&
"This case is not handled yet");
if (btrans == matrix_op_t::NoTranspose) {
n_adjusted = std::max(n / 2, 1);
}
}
int ncols_per_quant_group = groups * n_adjusted;
if (q_granularity == QuantizationGranularity::GROUP) {
ncols_per_quant_group = n_adjusted;
} else if (q_granularity == QuantizationGranularity::OUT_CHANNEL) {
ncols_per_quant_group = 1;
}
aligned_vector<int32_t> Bint8_zero_point(
groups * n_adjusted / ncols_per_quant_group);
randFill(Bint8_zero_point, -50, -10);
// computing column offset
vector<int32_t> col_offsets(groups * n_adjusted);
for (int g = 0; g < groups; ++g) {
col_offsets_with_zero_pt_s8acc32_ref(
k_per_group,
n_adjusted,
n,
Bint8.data() + g * k_per_group * n,
Bint8_zero_point.data() + g * n_adjusted / ncols_per_quant_group,
col_offsets.data() + g * n_adjusted,
ncols_per_quant_group);
}
CompressedSparseColumn B_csc(k_per_group, groups * n_adjusted);
// Make sure density is big enough. Otherwise, we're not really testing
// spmdm.
// deterministic random number
random_device r;
default_random_engine eng(r());
binomial_distribution<> per_col_nnz_dist(k_per_group, density);
vector<int> row_indices(k_per_group);
int total_nnz = 0;
for (int g = 0; g < groups; ++g) {
for (int j = 0; j < n_adjusted; ++j) {
B_csc.ColPtr()[g * n_adjusted + j] = total_nnz;
int nnz_of_j = per_col_nnz_dist(eng);
total_nnz += nnz_of_j;
iota(row_indices.begin(), row_indices.end(), 0);
shuffle(row_indices.begin(), row_indices.end(), eng);
sort(row_indices.begin(), row_indices.begin() + nnz_of_j);
for (int kidx = 0; kidx < nnz_of_j; ++kidx) {
int rowidx = row_indices[kidx];
B_csc.RowIdx().push_back(rowidx);
int8_t* bptr = &Bint8[(g * k_per_group + rowidx) * n + j];
int b_remainder = 0;
if (kidx % 2 == 1) {
// Make sure abs(b_prev + *bptr - b_remainder) <= 128
int b_prev = B_csc.Values().back();
b_remainder = std::max(b_prev + *bptr - 128, b_remainder);
b_remainder = std::min(b_prev + *bptr + 128, b_remainder);
}
// put a portion of current B value that won't saturate
// _mm256_maddubs_epi16 .
B_csc.Values().push_back(*bptr - b_remainder);
// put the remainder
*bptr = b_remainder;
}
}
}
B_csc.ColPtr()[groups * n_adjusted] = total_nnz;
aligned_vector<int8_t> Bint8_ref(Bint8);
if (btrans == matrix_op_t::Transpose) {
aligned_vector<int8_t> Bint8_temp(Bint8.size());
for (int g = 0; g < groups; ++g) {
transpose_matrix(
k_per_group,
n,
Bint8.data() + g * k_per_group * n,
n,
Bint8_temp.data() + g * k_per_group * n,
k_per_group);
}
Bint8 = Bint8_temp;
}
vector<int32_t> row_offsets(m);
aligned_vector<float> C_multiplier(Bint8_zero_point.size());
randFill(C_multiplier, 0.001234f / 2, 0.001234f * 3 / 2);
int32_t C_zero_pt = 5;
int brow = 256;
for (int g = 0; g < groups; ++g) {
matmul_u8i8acc16_ref(
m,
n_adjusted,
k_per_group,
k,
n,
groups * n,
brow,
Aint8.data() + g * k_per_group,
Bint8_ref.data() + g * k_per_group * n,
Cint32_ref.data() + g * n_adjusted);
}
bool accumulation = true;
spmdm_ref(
m,
Aint8.data(),
k,
B_csc,
accumulation,
Cint32_ref.data(),
groups * n,
groups);
for (int g = 0; g < groups; ++g) {
row_offsets_u8acc32_ref(
m,
k_per_group,
k,
Aint8.data() + g * k_per_group,
row_offsets.data());
requantize_u8acc32_ref(
m,
n_adjusted,
groups * n,
Cint32_ref.data() + g * n_adjusted,
Cint8_ref.data() + g * n_adjusted,
C_multiplier.data() + g * n_adjusted / ncols_per_quant_group,
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data() + g * n_adjusted / ncols_per_quant_group,
row_offsets.data(),
col_offsets.data() + g * n_adjusted,
nullptr,
ncols_per_quant_group);
}
PackBMatrix<int8_t, int16_t> packedB(
btrans,
k,
n_adjusted,
Bint8.data(),
(btrans == matrix_op_t::Transpose) ? k_per_group : n,
nullptr,
groups);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
vector<int32_t> row_offset_buf(
PackAWithRowOffset<uint8_t, int16_t>::rowOffsetBufferSize());
PackAWithRowOffset<uint8_t, int16_t> packAN(
matrix_op_t::NoTranspose,
m,
k,
Aint8.data(),
k,
nullptr,
groups,
row_offset_buf.data());
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
// spmdm -> requantization -> nothing
// construct an output processing pipeline in reverse order
// i.e. last output operation first
// Last operation should always be DoNothing with
// correct input and output type.
DoNothing<> doNothingObj{};
if (q_granularity == QuantizationGranularity::TENSOR) {
// The second last operation is requantization back
// to int8
ReQuantizeOutput<false> reqObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
packAN.getRowOffsetBuffer(),
col_offsets.data(),
nullptr,
groups * n_adjusted,
groups);
// the top most (first) operation in the output processing
// pipeline is spmdm
// outType = final output type after fullly processing through
// pipeline inType = initial input type at the first call to the
// whole pipeline
DoSpmdmOnInpBuffer<
ReQuantizeOutput<false>::outType,
int32_t,
ReQuantizeOutput<false>>
spmdmObj(reqObj, Aint8.data(), k, B_csc, groups);
fbgemmPacked(
packAN,
packedB,
Cint8_fb.data(),
Cint32_fb.data(),
groups * n,
spmdmObj,
tid,
num_threads);
} else if (q_granularity == QuantizationGranularity::GROUP) {
ReQuantizeOutput<false, QuantizationGranularity::GROUP> reqObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
packAN.getRowOffsetBuffer(),
col_offsets.data(),
nullptr,
groups * n_adjusted,
groups);
DoSpmdmOnInpBuffer<
ReQuantizeOutput<false>::outType,
int32_t,
ReQuantizeOutput<false, QuantizationGranularity::GROUP>>
spmdmObj(reqObj, Aint8.data(), k, B_csc, groups);
fbgemmPacked(
packAN,
packedB,
Cint8_fb.data(),
Cint32_fb.data(),
groups * n,
spmdmObj,
tid,
num_threads);
} else {
ReQuantizeOutput<false, QuantizationGranularity::OUT_CHANNEL>
reqObj(
doNothingObj,
C_multiplier.data(),
C_zero_pt,
Aint8_zero_point,
Bint8_zero_point.data(),
packAN.getRowOffsetBuffer(),
col_offsets.data(),
nullptr,
groups * n_adjusted,
groups);
DoSpmdmOnInpBuffer<
ReQuantizeOutput<false>::outType,
int32_t,
ReQuantizeOutput<false, QuantizationGranularity::OUT_CHANNEL>>
spmdmObj(reqObj, Aint8.data(), k, B_csc, groups);
fbgemmPacked(
packAN,
packedB,
Cint8_fb.data(),
Cint32_fb.data(),
groups * n,
spmdmObj,
tid,
num_threads);
}
}
compare_validate_buffers(
Cint8_ref.data(),
Cint8_fb.data(),
m,
groups * n_adjusted,
groups * n,
static_cast<uint8_t>(0));
} // for each density
} // for each groups
} // for each shape
}
/**
* @brief Unit test for uint8 matrix A, int8 matrix B, and 16-bit
* accumulation. Output processing: nothing
*/
TEST_P(fbgemmu8s8acc16Test, NoRequantizeTest) {
cpuinfo_initialize();
if (fbgemmHasAvx512VnniSupport()) {
// No need to use acc16 if VNNI is available
return;
}
vector<vector<int>> shapes(GetShapes_());
matrix_op_t atrans, btrans;
bool test_ld;
tie(atrans, btrans, test_ld) = GetParam();
for (auto shape : shapes) {
for (int groups : {1, 3, 4}) {
int m = shape[0];
int n = shape[1];
int k = shape[2];
if (k % groups != 0) {
continue;
}
int k_per_group = k / groups;
aligned_vector<uint8_t> Aint8(m * k);
aligned_vector<int8_t> Bint8_ref(k * n);
aligned_vector<int32_t> Cint32_ref(m * n * groups);
aligned_vector<int32_t> Cint32_fb(Cint32_ref.size());
aligned_vector<int32_t> Cint32_buffer(Cint32_ref.size());
randFill<uint8_t>(Aint8, 0, 255);
randFill<int8_t>(Bint8_ref, -128, 127);
aligned_vector<int8_t> Bint8(Bint8_ref);
if (btrans == matrix_op_t::Transpose) {
aligned_vector<int8_t> Bint8_temp(Bint8.size());
for (int g = 0; g < groups; ++g) {
transpose_matrix(
k_per_group,
n,
Bint8.data() + g * k_per_group * n,
n,
Bint8_temp.data() + g * k_per_group * n,
k_per_group);
}
Bint8 = Bint8_temp;
}
int32_t Bint8_zero_point = -30;
// To test lda != k , we just reduce k by half and use the original k
// as lda.
int n_adjusted = n;
if (test_ld) {
assert(
atrans == matrix_op_t::NoTranspose &&
"This case is not handled yet");
if (btrans == matrix_op_t::NoTranspose) {
n_adjusted = std::max(n / 2, 1);
}
}
// computing column offset
vector<int32_t> col_offsets(groups * n_adjusted);
for (int g = 0; g < groups; ++g) {
col_offsets_with_zero_pt_s8acc32_ref(
k_per_group,
n_adjusted,
n,
Bint8_ref.data() + g * k_per_group * n,
&Bint8_zero_point,
col_offsets.data() + g * n_adjusted,
n_adjusted);
}
vector<int32_t> row_offsets(m);
int brow = 256;
for (int g = 0; g < groups; ++g) {
matmul_u8i8acc16_ref(
m,
n_adjusted,
k_per_group,
k,
n,
groups * n,
brow,
Aint8.data() + g * k_per_group,
Bint8_ref.data() + g * k_per_group * n,
Cint32_ref.data() + g * n_adjusted);
row_offsets_u8acc32_ref(
m,
k_per_group,
k,
Aint8.data() + g * k_per_group,
row_offsets.data());
}
PackBMatrix<int8_t, int16_t> packedBN(
btrans,
k,
n_adjusted,
Bint8.data(),
(btrans == matrix_op_t::Transpose) ? k_per_group : n,
nullptr,
groups);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
vector<int32_t> row_offset_buf(
PackAWithRowOffset<uint8_t, int16_t>::rowOffsetBufferSize());
PackAWithRowOffset<uint8_t, int16_t> packAN(
matrix_op_t::NoTranspose,
m,
k,
Aint8.data(),
k,
nullptr,
groups,
row_offset_buf.data());
// DoNothing<> doNothingObj{};
DoNothing<int32_t, int32_t> doNothingObj{};
memCopy<> outputProcObj(doNothingObj);
int num_threads = fbgemm_get_num_threads();
int tid = fbgemm_get_thread_num();
fbgemmPacked(
packAN,
packedBN,
Cint32_fb.data(),
Cint32_buffer.data(),
groups * n,
outputProcObj,
tid,
num_threads);
}
compare_validate_buffers(
Cint32_ref.data(),
Cint32_fb.data(),
m,
groups * n_adjusted,
groups * n,
static_cast<int32_t>(0));
} // for each groups
} // for each shape
}
/**
* @brief Unit test for packing and unpacking the weight tensor.
*/
TEST_P(fbgemmPackUnpackAcc16Test, TestPackUnpack) {
vector<vector<int>> shapes(GetShapes_());
matrix_op_t btrans;
bool test_ld;
tie(btrans, test_ld) = GetParam();
BlockingFactors params;
params.MCB = 48;
params.NCB = 16;
params.KCB = 256;
params.MR = 1;
params.NR = 16;
params.ROW_INTERLEAVE = 4;
params.NR_MIN = 16;
vector<BlockingFactors*> vec_params_ptr = {&params, nullptr};
for (auto shape : shapes) {
for (int groups : {1, 3, 4}) {
for (auto params_ptr : vec_params_ptr) {
int n = shape[1];
int k = shape[2];
if (k % groups != 0) {
continue;
}
int k_per_group = k / groups;
// kxn matrix
aligned_vector<int8_t> Bint8(k * n);
randFill<int8_t>(Bint8, -128, 127);
// To test lda != k , we just reduce k by half and use the original k
// as lda.
int n_adjusted = n;
if (test_ld) {
if (btrans == matrix_op_t::NoTranspose) {
n_adjusted = std::max(n / 2, 1);
}
}
// Note that packing for weight is performed during the constructor
// stage.
PackBMatrix<int8_t, int16_t> packedWeights(
btrans,
k,
n_adjusted,
Bint8.data(),
(btrans == matrix_op_t::Transpose) ? k_per_group : n,
nullptr,
groups,
params_ptr);
// Setup a buffer to get pack -> unpacked results
aligned_vector<int8_t> unpack_buf(k * n, 0);
// Perform unpacking
packedWeights.unpack(unpack_buf.data(), params_ptr);
// Sanity check
for (int i = 0; i < k; i++) {
for (int j = 0; j < n_adjusted; j++) {
EXPECT_EQ(unpack_buf.data()[i * n + j], Bint8.data()[i * n + j])
<< "Pack/Unpack results differ at index (" << i << ", " << j
<< ", Reference: " << static_cast<int>(Bint8.data()[i * n + j])
<< ", Pack-Unpacked: "
<< static_cast<int>(unpack_buf.data()[i * n + j]);
}
}
}
}
}
}