sglang_v0.5.2/pytorch_2.8.0/benchmarks
hailin c8e8c1e9ff . 2025-09-20 16:09:34 +08:00
..
distributed/ddp . 2025-09-20 16:09:34 +08:00
dynamo . 2025-09-20 16:09:34 +08:00
fastrnns . 2025-09-20 16:09:34 +08:00
framework_overhead_benchmark . 2025-09-20 16:09:34 +08:00
functional_autograd_benchmark . 2025-09-20 16:09:34 +08:00
fuser . 2025-09-20 16:09:34 +08:00
gpt_fast . 2025-09-20 16:09:34 +08:00
inductor_backends . 2025-09-20 16:09:34 +08:00
inference . 2025-09-20 16:09:34 +08:00
instruction_counts . 2025-09-20 16:09:34 +08:00
nested . 2025-09-20 16:09:34 +08:00
operator_benchmark . 2025-09-20 16:09:34 +08:00
overrides_benchmark . 2025-09-20 16:09:34 +08:00
profiler_benchmark . 2025-09-20 16:09:34 +08:00
record_function_benchmark . 2025-09-20 16:09:34 +08:00
serialization . 2025-09-20 16:09:34 +08:00
sparse . 2025-09-20 16:09:34 +08:00
static_runtime . 2025-09-20 16:09:34 +08:00
tensorexpr . 2025-09-20 16:09:34 +08:00
transformer . 2025-09-20 16:09:34 +08:00
README.md . 2025-09-20 16:09:34 +08:00
compare-fastrnn-results.py . 2025-09-20 16:09:34 +08:00
compare.sh . 2025-09-20 16:09:34 +08:00
upload_scribe.py . 2025-09-20 16:09:34 +08:00

README.md

PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
pip3 install torch torchvision

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite. Links are provided where descriptions exist: