218 lines
6.6 KiB
Python
218 lines
6.6 KiB
Python
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import pytest
|
|
import torch
|
|
from sgl_kernel import FusedSetKVBufferArg, apply_rope_with_cos_sin_cache_inplace
|
|
|
|
|
|
# vLLM torch native
|
|
def _apply_rotary_emb(
|
|
x: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
is_neox_style: bool,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x: [num_tokens, num_heads, head_size]
|
|
cos: [num_tokens, head_size // 2]
|
|
sin: [num_tokens, head_size // 2]
|
|
is_neox_style: Whether to use the Neox-style or GPT-J-style rotary
|
|
positional embeddings.
|
|
"""
|
|
cos = cos.unsqueeze(-2).to(x.dtype)
|
|
sin = sin.unsqueeze(-2).to(x.dtype)
|
|
if is_neox_style:
|
|
x1, x2 = torch.chunk(x, 2, dim=-1)
|
|
else:
|
|
x1 = x[..., ::2]
|
|
x2 = x[..., 1::2]
|
|
o1 = x1 * cos - x2 * sin
|
|
o2 = x2 * cos + x1 * sin
|
|
if is_neox_style:
|
|
return torch.cat((o1, o2), dim=-1)
|
|
else:
|
|
return torch.stack((o1, o2), dim=-1).flatten(-2)
|
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module):
|
|
# Reference: https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/rotary_embedding.py
|
|
def __init__(
|
|
self,
|
|
head_size: int,
|
|
rotary_dim: int,
|
|
max_position_embeddings: int,
|
|
base: int,
|
|
is_neox_style: bool,
|
|
dtype: torch.dtype,
|
|
) -> None:
|
|
super().__init__()
|
|
self.head_size = head_size
|
|
self.rotary_dim = rotary_dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
self.is_neox_style = is_neox_style
|
|
self.dtype = dtype
|
|
|
|
cache = self._compute_cos_sin_cache()
|
|
self.cos_sin_cache: torch.Tensor
|
|
self.register_buffer("cos_sin_cache", cache, persistent=False)
|
|
|
|
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
|
|
inv_freq = 1.0 / (
|
|
base
|
|
** (
|
|
torch.arange(0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim
|
|
)
|
|
)
|
|
return inv_freq
|
|
|
|
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
|
"""Compute the cos and sin cache."""
|
|
inv_freq = self._compute_inv_freq(self.base)
|
|
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
|
|
|
|
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
|
cos = freqs.cos()
|
|
sin = freqs.sin()
|
|
cache = torch.cat((cos, sin), dim=-1)
|
|
return cache
|
|
|
|
def forward_native(
|
|
self,
|
|
positions: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
offsets: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""A PyTorch-native implementation of forward()."""
|
|
if offsets is not None:
|
|
positions = positions + offsets
|
|
|
|
positions = positions.flatten()
|
|
num_tokens = positions.shape[0]
|
|
cos_sin = self.cos_sin_cache.index_select(0, positions)
|
|
|
|
# Modification: float32 is required for the rotary embedding to work correctly
|
|
query = query.to(torch.float32)
|
|
key = key.to(torch.float32)
|
|
|
|
cos, sin = cos_sin.chunk(2, dim=-1)
|
|
|
|
query_shape = query.shape
|
|
query = query.view(num_tokens, -1, self.head_size)
|
|
query_rot = query[..., : self.rotary_dim]
|
|
query_pass = query[..., self.rotary_dim :]
|
|
query_rot = _apply_rotary_emb(query_rot, cos, sin, self.is_neox_style)
|
|
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
|
|
|
|
key_shape = key.shape
|
|
key = key.view(num_tokens, -1, self.head_size)
|
|
key_rot = key[..., : self.rotary_dim]
|
|
key_pass = key[..., self.rotary_dim :]
|
|
key_rot = _apply_rotary_emb(key_rot, cos, sin, self.is_neox_style)
|
|
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
|
|
|
|
# Modification: convert to the correct dtype
|
|
query = query.to(self.dtype)
|
|
key = key.to(self.dtype)
|
|
return query, key
|
|
|
|
|
|
class FlashInferRotaryEmbedding(RotaryEmbedding):
|
|
def forward_cuda(
|
|
self,
|
|
positions: torch.Tensor,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
|
|
offsets: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
apply_rope_with_cos_sin_cache_inplace(
|
|
positions=positions,
|
|
query=query,
|
|
key=key,
|
|
fused_set_kv_buffer_arg=fused_set_kv_buffer_arg,
|
|
head_size=self.head_size,
|
|
cos_sin_cache=self.cos_sin_cache,
|
|
is_neox=self.is_neox_style,
|
|
)
|
|
|
|
return query, key
|
|
|
|
|
|
class MHATokenToKVPool:
|
|
KV_POOL_SIZE = 16384
|
|
|
|
def __init__(
|
|
self,
|
|
head_num: int,
|
|
head_dim: int,
|
|
):
|
|
self.head_num = head_num
|
|
self.head_dim = head_dim
|
|
self.size = MHATokenToKVPool.KV_POOL_SIZE
|
|
self.page_size = 1
|
|
self.store_dtype = torch.bfloat16
|
|
self.device = "cuda"
|
|
self.layer_num = 1
|
|
self.start_layer = 0
|
|
self._create_buffers()
|
|
|
|
def _create_buffers(self):
|
|
self.k_buffer = [
|
|
torch.zeros(
|
|
(self.size + self.page_size, self.head_num, self.head_dim),
|
|
dtype=self.store_dtype,
|
|
device=self.device,
|
|
)
|
|
for _ in range(self.layer_num)
|
|
]
|
|
self.v_buffer = [
|
|
torch.zeros(
|
|
(self.size + self.page_size, self.head_num, self.head_dim),
|
|
dtype=self.store_dtype,
|
|
device=self.device,
|
|
)
|
|
for _ in range(self.layer_num)
|
|
]
|
|
|
|
def set_kv_buffer(
|
|
self,
|
|
loc: torch.Tensor,
|
|
cache_k: torch.Tensor,
|
|
cache_v: torch.Tensor,
|
|
):
|
|
layer_id = 0
|
|
self.k_buffer[layer_id - self.start_layer][loc] = cache_k
|
|
self.v_buffer[layer_id - self.start_layer][loc] = cache_v
|
|
|
|
|
|
def create_inputs(
|
|
head_size: int,
|
|
batch_size: int,
|
|
seq_len: int,
|
|
device,
|
|
dtype: torch.dtype,
|
|
num_q_heads: int,
|
|
num_kv_heads: int,
|
|
):
|
|
pos_ids = torch.arange(seq_len, device=device).repeat(batch_size)
|
|
query = torch.randn(
|
|
batch_size * seq_len, num_q_heads * head_size, dtype=dtype, device=device
|
|
)
|
|
key = torch.randn(
|
|
batch_size * seq_len, num_kv_heads * head_size, dtype=dtype, device=device
|
|
)
|
|
value = torch.randn(
|
|
batch_size * seq_len, num_kv_heads * head_size, dtype=dtype, device=device
|
|
)
|
|
out_cache_loc = torch.randperm(
|
|
MHATokenToKVPool.KV_POOL_SIZE, dtype=torch.int64, device=device
|
|
)[: batch_size * seq_len].clone()
|
|
|
|
return dict(
|
|
pos_ids=pos_ids, query=query, key=key, value=value, out_cache_loc=out_cache_loc
|
|
)
|