150 lines
5.1 KiB
Python
150 lines
5.1 KiB
Python
"""
|
|
Copyright (c) 2025 by FlashInfer team.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from flashinfer.gemm import (
|
|
batch_deepgemm_fp8_nt_groupwise,
|
|
group_deepgemm_fp8_nt_groupwise,
|
|
)
|
|
from flashinfer.testing.utils import bench_gpu_time, quantize_fp8
|
|
|
|
|
|
def bench_deepgemm_grouped_fp8_blackwell(batch_size, m, n, k, in_dtype, out_dtype):
|
|
"""Benchmark DeepGEMM-based grouped GEMM with FP8 quantization."""
|
|
|
|
# Create float32 input tensors
|
|
a_f32 = torch.randn(batch_size * m, k, device="cuda", dtype=torch.float32)
|
|
b_f32 = torch.randn(batch_size, n, k, device="cuda", dtype=torch.float32)
|
|
|
|
# Quantize tensor A using per-token quantization
|
|
a_fp8, a_scale = quantize_fp8(a_f32, (batch_size * m, k // 128), (1, 128), "K")
|
|
|
|
# Quantize tensor B using per-block quantization
|
|
b_fp8, b_scale = quantize_fp8(
|
|
b_f32, (batch_size, n // 128, k // 128), (1, 128, 128), "K"
|
|
)
|
|
|
|
# Create group assignment indices
|
|
m_indices = torch.arange(
|
|
batch_size, device="cuda", dtype=torch.int32
|
|
).repeat_interleave(m)
|
|
|
|
# Pre-allocate output tensor
|
|
out = torch.empty(batch_size * m, n, device="cuda", dtype=out_dtype)
|
|
|
|
# Benchmark the DeepGEMM function
|
|
measurements = bench_gpu_time(
|
|
lambda: group_deepgemm_fp8_nt_groupwise(
|
|
a_fp8, b_fp8, a_scale, b_scale, m_indices, out=out, out_dtype=out_dtype
|
|
),
|
|
dry_run_time_ms=100,
|
|
repeat_time_ms=1000,
|
|
)
|
|
ms = np.median(measurements)
|
|
tflops_per_second = 2 * batch_size * m * n * k * 1e-9 / ms
|
|
memory_bandwidth_per_second = (
|
|
sum(
|
|
[
|
|
_.numel() * _.element_size()
|
|
for _ in [a_fp8, b_fp8, a_scale, b_scale, m_indices, out]
|
|
]
|
|
)
|
|
* 1e-9
|
|
/ ms
|
|
)
|
|
print(
|
|
f"group_deepgemm_fp8_nt_groupwise batch_size={batch_size} m={m} n={n} k={k} "
|
|
f"in_dtype={in_dtype} out_dtype={out_dtype}: {tflops_per_second:.2f} TFLOPs/s"
|
|
f"memory_bandwidth: {memory_bandwidth_per_second:.2f} TB/s"
|
|
)
|
|
|
|
return tflops_per_second
|
|
|
|
|
|
def bench_deepgemm_batch_fp8_blackwell(batch_size, m, n, k, in_dtype, out_dtype):
|
|
"""Benchmark DeepGEMM-based batch GEMM with FP8 quantization."""
|
|
|
|
a = torch.randn((batch_size, m, k), device="cuda", dtype=torch.float32)
|
|
b = torch.randn((batch_size, n, k), device="cuda", dtype=torch.float32)
|
|
masked_m = torch.randint(0, m, (batch_size,), device="cuda", dtype=torch.int32)
|
|
a_fp8, a_scale = quantize_fp8(a, (batch_size, m, k // 128), (1, 1, 128), "K")
|
|
b_fp8, b_scale = quantize_fp8(
|
|
b, (batch_size, n // 128, k // 128), (1, 128, 128), "K"
|
|
)
|
|
expected_m = min(int(masked_m.float().mean()) + 1, m)
|
|
|
|
out = torch.empty((batch_size, m, n), device="cuda", dtype=out_dtype)
|
|
|
|
# Benchmark the DeepGEMM function
|
|
measurements = bench_gpu_time(
|
|
lambda: batch_deepgemm_fp8_nt_groupwise(
|
|
a_fp8,
|
|
b_fp8,
|
|
a_scale,
|
|
b_scale,
|
|
masked_m,
|
|
expected_m,
|
|
out=out,
|
|
out_dtype=out_dtype,
|
|
),
|
|
dry_run_time_ms=100,
|
|
repeat_time_ms=1000,
|
|
)
|
|
ms = np.median(measurements)
|
|
|
|
tflops_per_second = 2 * batch_size * m * n * k * 1e-9 / ms
|
|
memory_bandwidth_per_second = (
|
|
sum(
|
|
[
|
|
_.numel() * _.element_size()
|
|
for _ in [a_fp8, b_fp8, a_scale, b_scale, masked_m, out]
|
|
]
|
|
)
|
|
* 1e-9
|
|
/ ms
|
|
)
|
|
print(
|
|
f"group_deepgemm_fp8_nt_groupwise batch_size={batch_size} m={m} n={n} k={k} "
|
|
f"in_dtype={in_dtype} out_dtype={out_dtype}: {tflops_per_second:.2f} TFLOPs/s"
|
|
f"memory_bandwidth: {memory_bandwidth_per_second:.2f} TB/s"
|
|
)
|
|
|
|
return tflops_per_second
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print("=== DeepGEMM Grouped FP8 GEMM Benchmark ===\n")
|
|
|
|
for batch_size in [1, 4, 8, 64, 128, 256]:
|
|
for m in [128, 256, 1024, 8192, 16384]:
|
|
for n, k in [(128, 512), (512, 128), (4096, 7168), (7168, 2048)]:
|
|
if m // batch_size < 128:
|
|
continue
|
|
if m * batch_size <= 16384: # Limit total problem size
|
|
bench_deepgemm_grouped_fp8_blackwell(
|
|
batch_size, m, n, k, torch.float8_e4m3fn, torch.bfloat16
|
|
)
|
|
|
|
for batch_size in [1, 4, 8, 64, 128, 256]:
|
|
for m in [128, 256, 1024, 8192, 16384]:
|
|
for n, k in [(128, 512), (512, 128), (4096, 7168), (7168, 2048)]:
|
|
if m * batch_size <= 16384: # Limit total problem size
|
|
bench_deepgemm_batch_fp8_blackwell(
|
|
batch_size, m, n, k, torch.float8_e4m3fn, torch.bfloat16
|
|
)
|