sglang_v0.5.2/flashinfer_0.3.1/csrc/batch_decode.cu

198 lines
8.9 KiB
Plaintext

/*
* Copyright (c) 2023 by FlashInfer team.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <flashinfer/attention/scheduler.cuh>
#include <flashinfer/pos_enc.cuh>
#include <flashinfer/utils.cuh>
#include <optional>
#include "batch_decode_config.inc"
#include "pytorch_conversion_utils.h"
#include "pytorch_extension_utils.h"
namespace flashinfer {
template <uint32_t HEAD_DIM, PosEncodingMode POS_ENCODING_MODE, typename AttentionVariant,
typename Params>
cudaError_t BatchDecodeWithPagedKVCacheDispatched(Params params, typename Params::DTypeO* tmp_v,
float* tmp_s, bool enable_pdl,
cudaStream_t stream);
} // namespace flashinfer
using namespace flashinfer;
at::Tensor BatchDecodeWithPagedKVCachePlan(
at::Tensor float_workspace_buffer, at::Tensor int_workspace_buffer,
at::Tensor page_locked_int_workspace_buffer, at::Tensor indptr, int64_t batch_size,
int64_t num_qo_heads, int64_t num_kv_heads, int64_t page_size, bool enable_cuda_graph,
int64_t window_left, double logits_soft_cap, int64_t head_dim_qk, int64_t head_dim_vo,
at::Tensor empty_q_data, at::Tensor empty_kv_data) {
size_t float_workspace_size_in_bytes =
float_workspace_buffer.size(0) * float_workspace_buffer.element_size();
size_t int_workspace_size_in_bytes =
int_workspace_buffer.size(0) * int_workspace_buffer.element_size();
DecodePlanInfo plan_info;
auto q_scalar_type = empty_q_data.scalar_type();
auto kv_scalar_type = empty_kv_data.scalar_type();
TORCH_CHECK(head_dim_qk == head_dim_vo,
"CUDA cores template only supports equal head dim for QK and VO, please use tensor "
"cores template for different head dim");
const c10::cuda::OptionalCUDAGuard device_guard(float_workspace_buffer.device());
const cudaStream_t stream = c10::cuda::getCurrentCUDAStream();
DISPATCH_context(
DTypeQ, DTypeKV, DTypeO, IdType, HEAD_DIM_QK, HEAD_DIM_VO, POS_ENCODING_MODE,
USE_SLIDING_WINDOW, USE_LOGITS_SOFT_CAP, AttentionVariant, Params, [&] {
DISPATCH_GQA_GROUP_SIZE(num_qo_heads / num_kv_heads, GROUP_SIZE, {
auto work_estimation_func = BatchDecodeWithPagedKVCacheWorkEstimationDispatched<
GROUP_SIZE, HEAD_DIM_QK, POS_ENCODING_MODE, AttentionVariant, Params>;
cudaError_t status = DecodePlan<HEAD_DIM_QK, POS_ENCODING_MODE, AttentionVariant, Params>(
static_cast<void*>(float_workspace_buffer.data_ptr()), float_workspace_size_in_bytes,
static_cast<void*>(int_workspace_buffer.data_ptr()),
static_cast<void*>(page_locked_int_workspace_buffer.data_ptr()),
int_workspace_size_in_bytes, plan_info, static_cast<IdType*>(indptr.data_ptr()),
batch_size, num_qo_heads, page_size, enable_cuda_graph,
/*stream=*/stream, work_estimation_func);
TORCH_CHECK(status == cudaSuccess, "BatchDecodeWithPagedKVCache failed with error ",
cudaGetErrorString(status));
return true;
});
});
return vec_to_tensor(plan_info.ToVector());
}
void BatchDecodeWithPagedKVCacheRun(at::Tensor float_workspace_buffer,
at::Tensor int_workspace_buffer, at::Tensor plan_info_vec,
at::Tensor q, at::Tensor paged_k_cache,
at::Tensor paged_v_cache, at::Tensor paged_kv_indptr,
at::Tensor paged_kv_indices, at::Tensor paged_kv_last_page_len,
at::Tensor o, std::optional<at::Tensor> maybe_lse,
int64_t kv_layout_code, int64_t window_left,
bool enable_pdl ADDITIONAL_FUNC_PARAMS) {
DecodePlanInfo plan_info;
plan_info.FromVector(tensor_to_vec(plan_info_vec));
QKVLayout kv_layout = static_cast<QKVLayout>(kv_layout_code);
auto device = q.device();
int64_t batch_size = q.size(0);
int64_t num_qo_heads = q.size(1);
int64_t num_kv_heads, page_size;
if (kv_layout == QKVLayout::kHND) {
num_kv_heads = paged_k_cache.size(1);
page_size = paged_k_cache.size(2);
} else {
page_size = paged_k_cache.size(1);
num_kv_heads = paged_k_cache.size(2);
}
uint32_t head_dim_qk = q.size(2);
uint32_t head_dim_vo = paged_v_cache.size(3);
TORCH_CHECK(head_dim_qk == head_dim_vo,
"CUDA cores template only supports equal head dim for QK and VO, please use tensor "
"cores template for different head dim");
if (maybe_lse) {
const auto& lse = *maybe_lse;
TORCH_CHECK(lse.size(0) == batch_size, lse.size(0), q.size(0));
TORCH_CHECK(lse.size(1) == num_qo_heads, lse.size(1), q.size(1));
}
void* float_buffer = static_cast<void*>(float_workspace_buffer.data_ptr());
void* int_buffer = static_cast<void*>(int_workspace_buffer.data_ptr());
// get q_scalar_type and kv_scalar_type
auto q_scalar_type = q.scalar_type();
auto kv_scalar_type = paged_k_cache.scalar_type();
// get q_stride_n and q_stride_h
const auto q_stride_n = q.stride(0);
const auto q_stride_h = q.stride(1);
// get kv_cache_strides
const int64_t* kv_cache_strides = nullptr;
auto k_strides = paged_k_cache.strides();
auto v_strides = paged_v_cache.strides();
TORCH_CHECK(k_strides == v_strides, "k/v strides must be identical");
kv_cache_strides = k_strides.data();
const c10::cuda::OptionalCUDAGuard device_guard(device);
const cudaStream_t stream = c10::cuda::getCurrentCUDAStream();
DISPATCH_context(
DTypeQ, DTypeKV, DTypeO, IdType, HEAD_DIM_QK, HEAD_DIM_VO, POS_ENCODING_MODE,
USE_SLIDING_WINDOW, USE_LOGITS_SOFT_CAP, AttentionVariant, Params, [&] {
paged_kv_t<DTypeKV, IdType> paged_kv(
num_kv_heads, page_size, HEAD_DIM_QK, batch_size, kv_layout,
static_cast<DTypeKV*>(paged_k_cache.data_ptr()),
static_cast<DTypeKV*>(paged_v_cache.data_ptr()), kv_cache_strides,
static_cast<IdType*>(paged_kv_indices.data_ptr()),
static_cast<IdType*>(paged_kv_indptr.data_ptr()),
static_cast<IdType*>(paged_kv_last_page_len.data_ptr()));
Params params;
params.q = static_cast<DTypeQ*>(q.data_ptr());
params.paged_kv = paged_kv;
params.o = static_cast<DTypeO*>(o.data_ptr());
params.lse = maybe_lse ? static_cast<float*>(maybe_lse->data_ptr()) : nullptr;
params.padded_batch_size = 0;
params.num_qo_heads = num_qo_heads;
params.q_stride_n = q_stride_n;
params.q_stride_h = q_stride_h;
params.window_left = window_left;
params.request_indices = nullptr;
params.kv_tile_indices = nullptr;
params.o_indptr = nullptr;
params.kv_chunk_size_ptr = nullptr;
params.block_valid_mask = nullptr;
params.partition_kv = false;
ADDITIONAL_PARAMS_SETTER
DTypeO* tmp_v = nullptr;
float* tmp_s = nullptr;
params.request_indices =
GetPtrFromBaseOffset<IdType>(int_buffer, plan_info.request_indices_offset);
params.kv_tile_indices =
GetPtrFromBaseOffset<IdType>(int_buffer, plan_info.kv_tile_indices_offset);
params.o_indptr = GetPtrFromBaseOffset<IdType>(int_buffer, plan_info.o_indptr_offset);
params.kv_chunk_size_ptr =
GetPtrFromBaseOffset<IdType>(int_buffer, plan_info.kv_chunk_size_ptr_offset);
if (plan_info.split_kv) {
tmp_v = GetPtrFromBaseOffset<DTypeO>(float_buffer, plan_info.v_offset);
tmp_s = GetPtrFromBaseOffset<float>(float_buffer, plan_info.s_offset);
if (plan_info.enable_cuda_graph) {
params.block_valid_mask =
GetPtrFromBaseOffset<bool>(int_buffer, plan_info.block_valid_mask_offset);
}
}
params.padded_batch_size = plan_info.padded_batch_size;
cudaError_t status =
flashinfer::BatchDecodeWithPagedKVCacheDispatched<HEAD_DIM_QK, POS_ENCODING_MODE,
AttentionVariant>(params, tmp_v,
tmp_s, enable_pdl,
/*stream=*/stream);
TORCH_CHECK(status == cudaSuccess, "BatchDecodeWithPagedKVCache failed with error ",
cudaGetErrorString(status));
return true;
});
}