2221 lines
88 KiB
Plaintext
2221 lines
88 KiB
Plaintext
/*
|
|
* Copyright (c) 2024 by FlashInfer team.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#ifndef FLASHINFER_SAMPLING_CUH_
|
|
#define FLASHINFER_SAMPLING_CUH_
|
|
|
|
#include <cuda.h>
|
|
#include <curand.h>
|
|
#include <curand_kernel.h>
|
|
#include <curand_philox4x32_x.h>
|
|
|
|
#include <cub/cub.cuh>
|
|
#include <cuda/functional>
|
|
#include <cuda/std/functional>
|
|
#include <cuda/std/limits>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <tuple>
|
|
|
|
#include "allocator.h"
|
|
#include "math.cuh"
|
|
#include "utils.cuh"
|
|
#include "vec_dtypes.cuh"
|
|
|
|
// Define reduction operators based on CUDA version
|
|
// CUDA 13 (12.9+) deprecated cub::Max/Min in favor of cuda::maximum/minimum
|
|
#if CUDA_VERSION >= 12090
|
|
using MaxReduceOp = cuda::maximum<>;
|
|
using MinReduceOp = cuda::minimum<>;
|
|
#else
|
|
using MaxReduceOp = cub::Max;
|
|
using MinReduceOp = cub::Min;
|
|
#endif
|
|
|
|
namespace flashinfer {
|
|
|
|
namespace sampling {
|
|
|
|
using namespace cub;
|
|
|
|
#define DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, ...) \
|
|
if (deterministic) { \
|
|
constexpr bool DETERMINISTIC = true; \
|
|
__VA_ARGS__ \
|
|
} else { \
|
|
constexpr bool DETERMINISTIC = false; \
|
|
__VA_ARGS__ \
|
|
}
|
|
|
|
#define DISPATCH_COMPUTE_CAP_NUM_THREADS(compute_capacity, BLOCK_THREADS, ...) \
|
|
if (compute_capacity.first >= 8) { \
|
|
constexpr uint32_t BLOCK_THREADS = 1024; \
|
|
__VA_ARGS__ \
|
|
} else { \
|
|
constexpr uint32_t BLOCK_THREADS = 512; \
|
|
__VA_ARGS__ \
|
|
}
|
|
|
|
#define DISPATCH_SOFTMAX_CACHE_INPUT(cache_input, CACHE_INPUT, ...) \
|
|
if (cache_input) { \
|
|
constexpr bool CACHE_INPUT = true; \
|
|
__VA_ARGS__ \
|
|
} else { \
|
|
constexpr bool CACHE_INPUT = false; \
|
|
__VA_ARGS__ \
|
|
}
|
|
|
|
constexpr BlockScanAlgorithm SCAN_ALGO = BLOCK_SCAN_WARP_SCANS;
|
|
constexpr BlockReduceAlgorithm REDUCE_ALGO = BLOCK_REDUCE_WARP_REDUCTIONS;
|
|
|
|
#if (__CUDACC_VER_MAJOR__ * 10000 + __CUDACC_VER_MINOR__ * 100 >= 120100)
|
|
#define FLASHINFER_CUB_SUBTRACTLEFT_DEFINED
|
|
#endif
|
|
|
|
template <typename T>
|
|
struct ValueCount {
|
|
T value;
|
|
int count;
|
|
|
|
__device__ ValueCount operator+(const ValueCount& other) const {
|
|
return {value + other.value, count + other.count};
|
|
}
|
|
__device__ ValueCount& operator+=(const ValueCount& other) {
|
|
value += other.value;
|
|
count += other.count;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
struct BoolDiffOp {
|
|
__device__ __forceinline__ bool operator()(const bool& lhs, const bool& rhs) const {
|
|
return lhs != rhs;
|
|
}
|
|
};
|
|
|
|
struct Float2SoftmaxReduceOp {
|
|
__device__ __forceinline__ float2 operator()(const float2& a, const float2& b) const {
|
|
if (isinf(a.x)) return b;
|
|
if (isinf(b.x)) return a;
|
|
|
|
float new_max = max(a.x, b.x);
|
|
float new_denom = a.y * __expf(a.x - new_max) + b.y * __expf(b.x - new_max);
|
|
return make_float2(new_max, new_denom);
|
|
}
|
|
};
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM>
|
|
struct SamplingTempStorage {
|
|
union {
|
|
float deterministic_scan[BLOCK_THREADS / 32];
|
|
typename BlockScan<float, BLOCK_THREADS, SCAN_ALGORITHM>::TempStorage scan;
|
|
typename BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage reduce;
|
|
typename BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage reduce_int;
|
|
typename BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
|
|
reduce_value_count;
|
|
typename BlockAdjacentDifference<bool, BLOCK_THREADS>::TempStorage adj_diff;
|
|
} block_prim;
|
|
struct {
|
|
int32_t sampled_id;
|
|
int32_t last_valid_id;
|
|
float max_val;
|
|
union {
|
|
float value;
|
|
ValueCount<float> pair;
|
|
} block_aggregate;
|
|
};
|
|
};
|
|
|
|
template <uint32_t BLOCK_THREADS>
|
|
struct OnlineSoftmaxTempStorage {
|
|
union {
|
|
typename cub::BlockReduce<float, BLOCK_THREADS>::TempStorage reduce;
|
|
typename cub::BlockReduce<float2, BLOCK_THREADS>::TempStorage reduce_pair;
|
|
} block_prim;
|
|
|
|
struct {
|
|
float max_val;
|
|
float denominator;
|
|
} shared_state;
|
|
};
|
|
|
|
struct PartialSoftmaxResult {
|
|
float max_val;
|
|
float denominator;
|
|
};
|
|
|
|
/*!
|
|
* \brief Deterministic inclusive scan implementation, use Belloch scan algorithm.
|
|
* \note This implementation is slower than the cub::BlockScan, but it is deterministic.
|
|
*/
|
|
template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM>
|
|
__device__ __forceinline__ void DeterministicInclusiveSum(
|
|
const float* in_data, float* out_data,
|
|
SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>* temp_storage) {
|
|
float* smem_prefix_sum = temp_storage->block_prim.deterministic_scan;
|
|
float thread_data[VEC_SIZE];
|
|
float thread_sum = 0;
|
|
#pragma unroll
|
|
for (uint32_t i = 0; i < VEC_SIZE; ++i) {
|
|
thread_sum += in_data[i];
|
|
thread_data[i] = thread_sum;
|
|
}
|
|
|
|
float thread_exclusive_prefix_sum = thread_sum;
|
|
|
|
#pragma unroll
|
|
for (uint32_t offset = 1; offset < 32; offset *= 2) {
|
|
float tmp = __shfl_up_sync(0xffffffff, thread_exclusive_prefix_sum, offset);
|
|
if ((threadIdx.x + 1) % (offset * 2) == 0) {
|
|
thread_exclusive_prefix_sum += tmp;
|
|
}
|
|
}
|
|
|
|
float warp_sum = __shfl_sync(0xffffffff, thread_exclusive_prefix_sum, threadIdx.x | 0xffffffff);
|
|
if (threadIdx.x % 32 == 31) {
|
|
thread_exclusive_prefix_sum = 0;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (uint32_t offset = 16; offset >= 1; offset /= 2) {
|
|
float tmp = __shfl_xor_sync(0xffffffff, thread_exclusive_prefix_sum, offset);
|
|
if ((threadIdx.x + 1) % (offset * 2) == 0) {
|
|
thread_exclusive_prefix_sum = tmp + thread_exclusive_prefix_sum;
|
|
}
|
|
if ((threadIdx.x + 1) % (offset * 2) == offset) {
|
|
thread_exclusive_prefix_sum = tmp;
|
|
}
|
|
}
|
|
|
|
smem_prefix_sum[threadIdx.x / 32] = warp_sum;
|
|
__syncthreads();
|
|
|
|
if (threadIdx.x < 32) {
|
|
float warp_exclusive_prefix_sum =
|
|
(threadIdx.x < BLOCK_THREADS / 32) ? smem_prefix_sum[threadIdx.x] : 0;
|
|
|
|
#pragma unroll
|
|
for (uint32_t offset = 1; offset < 32; offset *= 2) {
|
|
float tmp = __shfl_up_sync(0xffffffff, warp_exclusive_prefix_sum, offset);
|
|
if ((threadIdx.x + 1) % (offset * 2) == 0) {
|
|
warp_exclusive_prefix_sum += tmp;
|
|
}
|
|
}
|
|
|
|
if (threadIdx.x % 32 == 31) {
|
|
warp_exclusive_prefix_sum = 0;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (uint32_t offset = 16; offset >= 1; offset /= 2) {
|
|
float tmp = __shfl_xor_sync(0xffffffff, warp_exclusive_prefix_sum, offset);
|
|
if ((threadIdx.x + 1) % (offset * 2) == 0) {
|
|
warp_exclusive_prefix_sum = tmp + warp_exclusive_prefix_sum;
|
|
}
|
|
if ((threadIdx.x + 1) % (offset * 2) == offset) {
|
|
warp_exclusive_prefix_sum = tmp;
|
|
}
|
|
}
|
|
if (threadIdx.x < BLOCK_THREADS / 32) {
|
|
smem_prefix_sum[threadIdx.x] = warp_exclusive_prefix_sum;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (uint32_t i = 0; i < VEC_SIZE; ++i) {
|
|
out_data[i] = smem_prefix_sum[threadIdx.x / 32] + thread_exclusive_prefix_sum + thread_data[i];
|
|
}
|
|
}
|
|
|
|
template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM,
|
|
typename TempStorage>
|
|
__device__ __forceinline__ std::tuple<float, float> GetMinMaxValue(float* in_data, uint32_t row_idx,
|
|
uint32_t d,
|
|
TempStorage& temp_storage) {
|
|
const uint32_t tx = threadIdx.x;
|
|
vec_t<float, VEC_SIZE> in_data_vec;
|
|
float max_val = -cuda::std::numeric_limits<float>::infinity(),
|
|
min_val = cuda::std::numeric_limits<float>::infinity();
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
in_data_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
in_data_vec.cast_load(in_data + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
float in_data_[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
in_data_[j] = in_data_vec[j];
|
|
}
|
|
max_val = max(
|
|
max_val, BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce<VEC_SIZE>(in_data_, MaxReduceOp{}));
|
|
__syncthreads();
|
|
min_val = min(
|
|
min_val, BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce<VEC_SIZE>(in_data_, MinReduceOp{}));
|
|
__syncthreads();
|
|
}
|
|
if (tx == 0) {
|
|
temp_storage.max_val = max_val;
|
|
temp_storage.min_val = min_val;
|
|
}
|
|
__syncthreads();
|
|
max_val = temp_storage.max_val;
|
|
min_val = temp_storage.min_val;
|
|
|
|
return std::make_tuple(min_val, max_val);
|
|
}
|
|
|
|
template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM,
|
|
typename TempStorage>
|
|
__device__ __forceinline__ float GetMaxValue(float* in_data, uint32_t row_idx, uint32_t d,
|
|
TempStorage& temp_storage) {
|
|
const uint32_t tx = threadIdx.x;
|
|
vec_t<float, VEC_SIZE> in_data_vec;
|
|
|
|
float max_val = 0;
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
in_data_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
in_data_vec.cast_load(in_data + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
float in_data_[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
in_data_[j] = in_data_vec[j];
|
|
}
|
|
max_val = max(
|
|
max_val, BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce<VEC_SIZE>(in_data_, MaxReduceOp{}));
|
|
__syncthreads();
|
|
}
|
|
if (tx == 0) {
|
|
temp_storage.max_val = max_val;
|
|
}
|
|
__syncthreads();
|
|
return temp_storage.max_val;
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, uint32_t VEC_SIZE, typename DType, bool CACHE_INPUT>
|
|
__global__ void OnlineSoftmaxFusedKernel(DType* logits, DType* output, DType* temperature_arr,
|
|
DType temperature_val, uint32_t d) {
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
float temperature = temperature_arr == nullptr ? temperature_val : temperature_arr[bx];
|
|
const float inv_temp = (temperature == 0.f) ? 0.f : 1.f / temperature;
|
|
|
|
using TempStorage = OnlineSoftmaxTempStorage<BLOCK_THREADS>;
|
|
extern __shared__ __align__(alignof(TempStorage)) uint8_t smem[];
|
|
auto& temp_storage = reinterpret_cast<TempStorage&>(smem);
|
|
|
|
DType* smem_vec_base = nullptr;
|
|
if constexpr (CACHE_INPUT) {
|
|
constexpr size_t vec_alignment = alignof(vec_t<DType, VEC_SIZE>);
|
|
size_t aligned_offset = round_up(sizeof(TempStorage), vec_alignment);
|
|
smem_vec_base = reinterpret_cast<DType*>(smem + aligned_offset);
|
|
}
|
|
|
|
vec_t<DType, VEC_SIZE> logits_vec;
|
|
|
|
float running_max = -cuda::std::numeric_limits<float>::infinity();
|
|
float running_denominator = 0.0f;
|
|
|
|
#if (__CUDACC_VER_MAJOR__ >= 12 && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
|
asm volatile("griddepcontrol.wait;");
|
|
#endif
|
|
|
|
// Pass 1: Compute running max and denominator
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
logits_vec.fill(-cuda::std::numeric_limits<DType>::infinity());
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
logits_vec.cast_load(logits + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
logits_vec[j] *= inv_temp;
|
|
}
|
|
|
|
if constexpr (CACHE_INPUT) {
|
|
logits_vec.store(smem_vec_base + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
}
|
|
|
|
float thread_max = -cuda::std::numeric_limits<float>::infinity();
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
thread_max = max(thread_max, logits_vec[j]);
|
|
}
|
|
float block_max = cub::BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
|
|
.Reduce(thread_max, MaxReduceOp{});
|
|
|
|
if (tx == 0) {
|
|
temp_storage.shared_state.max_val = block_max;
|
|
}
|
|
__syncthreads();
|
|
block_max = temp_storage.shared_state.max_val;
|
|
|
|
// if block_max is -inf, then this block contains all -inf values, so we can skip updating
|
|
if (!isinf(block_max)) {
|
|
float thread_sum = 0.0f;
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
thread_sum += __expf(logits_vec[j] - block_max);
|
|
}
|
|
|
|
float block_sum =
|
|
cub::BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce).Sum(thread_sum);
|
|
__syncthreads();
|
|
|
|
if (tx == 0) {
|
|
float new_max = max(running_max, block_max);
|
|
running_denominator = running_denominator * __expf(running_max - new_max) +
|
|
block_sum * __expf(block_max - new_max);
|
|
running_max = new_max;
|
|
|
|
temp_storage.shared_state.max_val = running_max;
|
|
temp_storage.shared_state.denominator = running_denominator;
|
|
}
|
|
__syncthreads();
|
|
running_max = temp_storage.shared_state.max_val;
|
|
running_denominator = temp_storage.shared_state.denominator;
|
|
}
|
|
}
|
|
|
|
const float final_max = running_max;
|
|
const float inv_denominator = 1.0f / running_denominator;
|
|
|
|
__syncthreads();
|
|
|
|
// Pass 2: Normalize in place
|
|
vec_t<DType, VEC_SIZE> prob_vec;
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
if constexpr (CACHE_INPUT) {
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
logits_vec.load(smem_vec_base + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
} else {
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
logits_vec.cast_load(logits + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
logits_vec[j] *= inv_temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
float p = __expf(static_cast<float>(logits_vec[j]) - final_max) * inv_denominator;
|
|
prob_vec[j] = static_cast<DType>(p);
|
|
}
|
|
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
prob_vec.cast_store(output + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
}
|
|
#if (__CUDACC_VER_MAJOR__ >= 12 && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
|
asm volatile("griddepcontrol.launch_dependents;");
|
|
#endif
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, uint32_t VEC_SIZE, typename DType>
|
|
__global__ void OnlineSoftmaxMapKernel(DType* logits, PartialSoftmaxResult* partial_results,
|
|
DType* temperature_arr, float temperature_val, uint32_t d,
|
|
uint32_t num_slices) {
|
|
const uint32_t bx = blockIdx.x;
|
|
const uint32_t by = blockIdx.y; // slice index
|
|
const uint32_t tx = threadIdx.x;
|
|
float temperature = temperature_arr == nullptr ? temperature_val : temperature_arr[bx];
|
|
const float inv_temp = (temperature == 0.f) ? 0.f : 1.f / temperature;
|
|
|
|
const uint32_t vec_alignment_elems = alignof(vec_t<DType, VEC_SIZE>) / sizeof(DType);
|
|
const uint32_t slice_stride = round_up(ceil_div(d, num_slices), vec_alignment_elems);
|
|
const uint32_t slice_start = by * slice_stride;
|
|
const uint32_t slice_size = min((by + 1) * slice_stride, d) - slice_start;
|
|
|
|
if (slice_start >= d) return;
|
|
|
|
using TempStorage = OnlineSoftmaxTempStorage<BLOCK_THREADS>;
|
|
extern __shared__ __align__(alignof(TempStorage)) uint8_t smem[];
|
|
auto& temp_storage = reinterpret_cast<TempStorage&>(smem);
|
|
|
|
vec_t<DType, VEC_SIZE> logits_vec;
|
|
float running_max = -cuda::std::numeric_limits<float>::infinity();
|
|
float running_denominator = 0.0f;
|
|
|
|
#if (__CUDACC_VER_MAJOR__ >= 12 && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
|
asm volatile("griddepcontrol.wait;");
|
|
#endif
|
|
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(slice_size, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
logits_vec.fill(-cuda::std::numeric_limits<DType>::infinity());
|
|
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < slice_size) {
|
|
logits_vec.cast_load(logits + bx * d + slice_start + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
float thread_max = -cuda::std::numeric_limits<float>::infinity();
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
logits_vec[j] *= inv_temp;
|
|
thread_max = max(thread_max, logits_vec[j]);
|
|
}
|
|
|
|
float block_max = cub::BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
|
|
.Reduce(thread_max, MaxReduceOp{});
|
|
|
|
if (tx == 0) {
|
|
temp_storage.shared_state.max_val = block_max;
|
|
}
|
|
__syncthreads();
|
|
block_max = temp_storage.shared_state.max_val;
|
|
|
|
// if block_max is -inf, then this block contains all -inf values, so we can skip updating
|
|
if (!isinf(block_max)) {
|
|
float thread_sum = 0.0f;
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
thread_sum += __expf(logits_vec[j] - block_max);
|
|
}
|
|
|
|
float block_sum =
|
|
cub::BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce).Sum(thread_sum);
|
|
__syncthreads();
|
|
|
|
if (tx == 0) {
|
|
float new_max = max(running_max, block_max);
|
|
running_denominator = running_denominator * __expf(running_max - new_max) +
|
|
block_sum * __expf(block_max - new_max);
|
|
running_max = new_max;
|
|
|
|
temp_storage.shared_state.max_val = running_max;
|
|
temp_storage.shared_state.denominator = running_denominator;
|
|
}
|
|
__syncthreads();
|
|
running_max = temp_storage.shared_state.max_val;
|
|
running_denominator = temp_storage.shared_state.denominator;
|
|
}
|
|
}
|
|
|
|
if (tx == 0) {
|
|
partial_results[bx * num_slices + by] = {running_max, running_denominator};
|
|
}
|
|
#if (__CUDACC_VER_MAJOR__ >= 12 && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
|
asm volatile("griddepcontrol.launch_dependents;");
|
|
#endif
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, uint32_t VEC_SIZE, typename DType>
|
|
__global__ void OnlineSoftmaxReduceKernel(DType* logits, DType* output,
|
|
PartialSoftmaxResult* partial_results,
|
|
DType* temperature_arr, float temperature_val, uint32_t d,
|
|
uint32_t num_slices) {
|
|
const uint32_t bx = blockIdx.x;
|
|
const uint32_t tx = threadIdx.x;
|
|
float temperature = temperature_arr == nullptr ? temperature_val : temperature_arr[bx];
|
|
const float inv_temp = (temperature == 0.f) ? 0.f : 1.f / temperature;
|
|
|
|
// Reduce slice results
|
|
using TempStorage = OnlineSoftmaxTempStorage<BLOCK_THREADS>;
|
|
extern __shared__ __align__(alignof(TempStorage)) uint8_t smem[];
|
|
auto& temp_storage = reinterpret_cast<TempStorage&>(smem);
|
|
|
|
const Float2SoftmaxReduceOp reduce_op;
|
|
|
|
float2 thread_aggregate = make_float2(-cuda::std::numeric_limits<float>::infinity(), 0.0f);
|
|
|
|
#if (__CUDACC_VER_MAJOR__ >= 12 && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
|
asm volatile("griddepcontrol.wait;");
|
|
#endif
|
|
|
|
for (uint32_t i = tx; i < num_slices; i += BLOCK_THREADS) {
|
|
PartialSoftmaxResult partial = partial_results[bx * num_slices + i];
|
|
float2 partial_pair = make_float2(partial.max_val, partial.denominator);
|
|
thread_aggregate = reduce_op(thread_aggregate, partial_pair);
|
|
}
|
|
|
|
float2 block_result = cub::BlockReduce<float2, BLOCK_THREADS>(temp_storage.block_prim.reduce_pair)
|
|
.Reduce(thread_aggregate, reduce_op);
|
|
|
|
if (tx == 0) {
|
|
temp_storage.shared_state.max_val = block_result.x;
|
|
temp_storage.shared_state.denominator = block_result.y;
|
|
}
|
|
__syncthreads();
|
|
|
|
block_result =
|
|
make_float2(temp_storage.shared_state.max_val, temp_storage.shared_state.denominator);
|
|
|
|
const float final_max = temp_storage.shared_state.max_val;
|
|
const float inv_denominator = 1.0f / temp_storage.shared_state.denominator;
|
|
|
|
// Apply normalization
|
|
vec_t<DType, VEC_SIZE> logits_vec;
|
|
vec_t<DType, VEC_SIZE> prob_vec;
|
|
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
logits_vec.fill(-cuda::std::numeric_limits<DType>::infinity());
|
|
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
logits_vec.cast_load(logits + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
logits_vec[j] *= inv_temp;
|
|
float p = __expf(static_cast<float>(logits_vec[j]) - final_max) * inv_denominator;
|
|
prob_vec[j] = static_cast<DType>(p);
|
|
}
|
|
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
prob_vec.cast_store(output + bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
}
|
|
#if (__CUDACC_VER_MAJOR__ >= 12 && defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
|
|
asm volatile("griddepcontrol.launch_dependents;");
|
|
#endif
|
|
}
|
|
|
|
template <uint32_t VEC_SIZE, uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM, bool DETERMINISTIC, typename Predicate>
|
|
__device__ __forceinline__ void DeviceSamplingFromProb(
|
|
uint32_t i, uint32_t d, Predicate pred, float u, vec_t<float, VEC_SIZE> prob_vec,
|
|
float& aggregate,
|
|
SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>* temp_storage) {
|
|
const uint32_t tx = threadIdx.x;
|
|
float prob_greater_than_threshold[VEC_SIZE];
|
|
float inclusive_cdf[VEC_SIZE];
|
|
bool greater_than_u[VEC_SIZE], valid[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
prob_greater_than_threshold[j] = pred(prob_vec[j]) ? prob_vec[j] : 0;
|
|
valid[j] = pred(prob_vec[j]) && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d;
|
|
}
|
|
float aggregate_local =
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage->block_prim.reduce)
|
|
.Sum<VEC_SIZE>(prob_greater_than_threshold);
|
|
if (tx == 0) {
|
|
temp_storage->block_aggregate.value = aggregate_local;
|
|
}
|
|
__syncthreads();
|
|
aggregate_local = temp_storage->block_aggregate.value;
|
|
|
|
if (aggregate + aggregate_local > u) {
|
|
if constexpr (DETERMINISTIC) {
|
|
DeterministicInclusiveSum<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>(
|
|
prob_greater_than_threshold, inclusive_cdf, temp_storage);
|
|
} else {
|
|
BlockScan<float, BLOCK_THREADS, SCAN_ALGORITHM>(temp_storage->block_prim.scan)
|
|
.InclusiveSum<VEC_SIZE>(prob_greater_than_threshold, inclusive_cdf);
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
greater_than_u[j] = (inclusive_cdf[j] + aggregate > u) && valid[j];
|
|
}
|
|
|
|
bool greater_than_u_diff[VEC_SIZE];
|
|
#ifdef FLASHINFER_CUB_SUBTRACTLEFT_DEFINED
|
|
BlockAdjacentDifference<bool, BLOCK_THREADS>(temp_storage->block_prim.adj_diff)
|
|
.SubtractLeft<VEC_SIZE>(greater_than_u, greater_than_u_diff, BoolDiffOp());
|
|
#else
|
|
BlockAdjacentDifference<bool, BLOCK_THREADS>(temp_storage->block_prim.adj_diff)
|
|
.FlagHeads<VEC_SIZE>(greater_than_u_diff, greater_than_u, BoolDiffOp(), 0);
|
|
#endif
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
if (greater_than_u_diff[j]) {
|
|
atomicMin(&(temp_storage->sampled_id), (i * BLOCK_THREADS + tx) * VEC_SIZE + j);
|
|
}
|
|
}
|
|
__syncthreads();
|
|
}
|
|
|
|
// update the last valid index
|
|
int valid_index[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
if (valid[j]) {
|
|
valid_index[j] = (i * BLOCK_THREADS + tx) * VEC_SIZE + j;
|
|
} else {
|
|
valid_index[j] = -1;
|
|
}
|
|
}
|
|
int max_valid_index =
|
|
BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage->block_prim.reduce_int)
|
|
.Reduce(valid_index, MaxReduceOp{});
|
|
if (tx == 0 && max_valid_index != -1) {
|
|
temp_storage->last_valid_id = max_valid_index;
|
|
}
|
|
__syncthreads();
|
|
aggregate += aggregate_local;
|
|
}
|
|
|
|
template <typename DType, typename IdType>
|
|
struct DataAndIndex {
|
|
DType data;
|
|
IdType index;
|
|
|
|
__device__ DataAndIndex operator+(const DataAndIndex& other) const {
|
|
if (data > other.data) {
|
|
return {data, index};
|
|
} else {
|
|
return {other.data, other.index};
|
|
}
|
|
}
|
|
__device__ DataAndIndex& operator+=(const DataAndIndex& other) {
|
|
if (data > other.data) {
|
|
return *this;
|
|
} else {
|
|
data = other.data;
|
|
index = other.index;
|
|
return *this;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DType, uint32_t VEC_SIZE>
|
|
__device__ __forceinline__ vec_t<DType, VEC_SIZE> GenerateGumbelNoise(uint64_t philox_seed,
|
|
uint64_t philox_offset,
|
|
uint64_t subsequence) {
|
|
curandStatePhilox4_32_10_t state;
|
|
vec_t<float, VEC_SIZE> noise;
|
|
constexpr float kEPSILON = 1e-20f;
|
|
constexpr float kLOG2 = 0.6931471806f;
|
|
auto uniform2gumbel = [](float x) { return -kLOG2 * log2f(-log2f(x + kEPSILON) + kEPSILON); };
|
|
// TODO: compare the speed of log2 and log
|
|
#pragma unroll
|
|
for (uint32_t i = 0; i + 4 <= VEC_SIZE; i += 4) {
|
|
curand_init(philox_seed, subsequence + i, philox_offset, &state);
|
|
float4 noise_vec = curand_uniform4(&state);
|
|
noise[i] = uniform2gumbel(noise_vec.x);
|
|
noise[i + 1] = uniform2gumbel(noise_vec.y);
|
|
noise[i + 2] = uniform2gumbel(noise_vec.z);
|
|
noise[i + 3] = uniform2gumbel(noise_vec.w);
|
|
}
|
|
if constexpr (VEC_SIZE % 4 != 0) {
|
|
curand_init(philox_seed, subsequence + VEC_SIZE / 4 * 4, philox_offset, &state);
|
|
float4 noise_vec = curand_uniform4(&state);
|
|
if constexpr (VEC_SIZE % 4 == 1) {
|
|
noise[VEC_SIZE - 1] = uniform2gumbel(noise_vec.x);
|
|
} else if constexpr (VEC_SIZE % 4 == 2) {
|
|
noise[VEC_SIZE - 2] = uniform2gumbel(noise_vec.x);
|
|
noise[VEC_SIZE - 1] = uniform2gumbel(noise_vec.y);
|
|
} else if constexpr (VEC_SIZE % 4 == 3) {
|
|
noise[VEC_SIZE - 3] = uniform2gumbel(noise_vec.x);
|
|
noise[VEC_SIZE - 2] = uniform2gumbel(noise_vec.y);
|
|
noise[VEC_SIZE - 1] = uniform2gumbel(noise_vec.z);
|
|
}
|
|
}
|
|
|
|
if constexpr (std::is_same_v<DType, float>) {
|
|
return noise;
|
|
} else {
|
|
vec_t<DType, VEC_SIZE> ret;
|
|
#pragma unroll
|
|
for (uint32_t i = 0; i < VEC_SIZE; ++i) {
|
|
ret[i] = static_cast<DType>(noise[i]);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
|
|
typename DType, typename IdType>
|
|
__global__ void SamplingFromLogitsKernel(DType* logits, IdType* output, IdType* indices, uint32_t d,
|
|
uint64_t philox_seed, uint64_t philox_offset) {
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
const uint32_t row_idx = indices == nullptr ? bx : indices[bx];
|
|
using SharedMem = typename BlockReduce<DataAndIndex<DType, IdType>, BLOCK_THREADS,
|
|
REDUCE_ALGORITHM>::TempStorage;
|
|
extern __shared__ __align__(alignof(SharedMem)) uint8_t smem_sampling_logit[];
|
|
auto& temp_storage = reinterpret_cast<SharedMem&>(smem_sampling_logit);
|
|
|
|
vec_t<DType, VEC_SIZE> logits_vec;
|
|
DataAndIndex<DType, IdType> max_data = {-cuda::std::numeric_limits<DType>::infinity(), 0};
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
logits_vec.fill(-cuda::std::numeric_limits<DType>::infinity());
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
logits_vec.cast_load(logits + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
|
|
vec_t<DType, VEC_SIZE> gumbel_noise = GenerateGumbelNoise<DType, VEC_SIZE>(
|
|
philox_seed, philox_offset,
|
|
static_cast<uint64_t>(bx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE));
|
|
DataAndIndex<DType, IdType> cur_data[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
cur_data[j].data = (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d
|
|
? logits_vec[j] + gumbel_noise[j]
|
|
: -cuda::std::numeric_limits<DType>::infinity();
|
|
cur_data[j].index = (i * BLOCK_THREADS + tx) * VEC_SIZE + j;
|
|
}
|
|
|
|
max_data +=
|
|
BlockReduce<DataAndIndex<DType, IdType>, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage)
|
|
.Sum<VEC_SIZE>(cur_data);
|
|
}
|
|
if (tx == 0) {
|
|
output[bx] = max_data.index;
|
|
}
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
|
|
typename DType, typename IdType>
|
|
__global__ void SamplingFromProbKernel(DType* probs, IdType* output, IdType* indices, uint32_t d,
|
|
uint64_t philox_seed, uint64_t philox_offset) {
|
|
curandStatePhilox4_32_10_t state;
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
curand_init(philox_seed, bx, philox_offset, &state);
|
|
const uint32_t row_idx = indices == nullptr ? bx : indices[bx];
|
|
|
|
extern __shared__ __align__(
|
|
alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
|
|
uint8_t smem_sampling[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
|
|
smem_sampling);
|
|
temp_storage.sampled_id = d;
|
|
__syncthreads();
|
|
|
|
vec_t<float, VEC_SIZE> probs_vec;
|
|
float aggregate(0);
|
|
float u = curand_uniform(&state);
|
|
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
|
|
DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM,
|
|
DETERMINISTIC>(
|
|
i, d, [](float x) { return x > 0; }, u, probs_vec, aggregate, &temp_storage);
|
|
if (float(aggregate) > u) {
|
|
break;
|
|
}
|
|
}
|
|
int sampled_id = temp_storage.sampled_id;
|
|
if (sampled_id == d) {
|
|
// NOTE(Zihao): this would happen when u is very close to 1
|
|
// and the sum of probabilities is smaller than u
|
|
// In this case, we use the last valid index as the sampled id
|
|
sampled_id = temp_storage.last_valid_id;
|
|
}
|
|
output[bx] = sampled_id;
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
|
|
typename DType, typename IdType>
|
|
__global__ void TopKSamplingFromProbKernel(DType* probs, IdType* output, IdType* indices,
|
|
IdType* top_k_arr, uint32_t top_k_val, uint32_t d,
|
|
uint64_t philox_seed, uint64_t philox_offset) {
|
|
const uint32_t batch_size = gridDim.x;
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
curandStatePhilox4_32_10_t state;
|
|
curand_init(philox_seed, bx, philox_offset, &state);
|
|
const uint32_t k = top_k_arr == nullptr ? top_k_val : top_k_arr[bx];
|
|
const uint32_t row_idx = indices == nullptr ? bx : indices[bx];
|
|
|
|
extern __shared__ __align__(
|
|
alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
|
|
uint8_t smem_sampling[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
|
|
smem_sampling);
|
|
|
|
vec_t<float, VEC_SIZE> probs_vec;
|
|
float aggregate;
|
|
float q = 1;
|
|
double low = 0, high = 1.f;
|
|
int sampled_id;
|
|
int round = 0;
|
|
do {
|
|
round += 1;
|
|
temp_storage.sampled_id = d;
|
|
__syncthreads();
|
|
float u = curand_uniform(&state) * q;
|
|
aggregate = 0;
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM,
|
|
DETERMINISTIC>(
|
|
i, d, [&](float x) { return x > low; }, u, probs_vec, aggregate, &temp_storage);
|
|
if (aggregate > u) {
|
|
break;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
sampled_id = temp_storage.sampled_id;
|
|
if (sampled_id == d) {
|
|
// NOTE(Zihao): this would happen when u is very close to 1
|
|
// and the sum of probabilities is smaller than u
|
|
// In this case, we use the last valid index as the sampled id
|
|
sampled_id = temp_storage.last_valid_id;
|
|
}
|
|
double pivot_0 = probs[row_idx * d + sampled_id];
|
|
double pivot_1 = (pivot_0 + high) / 2;
|
|
|
|
ValueCount<float> aggregate_gt_pivot_0{0, 0}, aggregate_gt_pivot_1{0, 0};
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
ValueCount<float> probs_gt_pivot_0[VEC_SIZE], probs_gt_pivot_1[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_gt_pivot_0[j] = {
|
|
(probs_vec[j] > pivot_0) ? probs_vec[j] : 0,
|
|
(probs_vec[j] > pivot_0 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
|
|
probs_gt_pivot_1[j] = {
|
|
(probs_vec[j] > pivot_1) ? probs_vec[j] : 0,
|
|
(probs_vec[j] > pivot_1 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
|
|
}
|
|
|
|
aggregate_gt_pivot_0 += BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>(
|
|
temp_storage.block_prim.reduce_value_count)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_0);
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.pair = aggregate_gt_pivot_0;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_0 = temp_storage.block_aggregate.pair;
|
|
|
|
aggregate_gt_pivot_1 += BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>(
|
|
temp_storage.block_prim.reduce_value_count)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_1);
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.pair = aggregate_gt_pivot_1;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_1 = temp_storage.block_aggregate.pair;
|
|
}
|
|
if (aggregate_gt_pivot_0.count < k) {
|
|
// case 1: pivot_0 accepted
|
|
break;
|
|
}
|
|
if (aggregate_gt_pivot_1.count < k) {
|
|
// case 2: pivot_0 rejected, pivot_1 accepted
|
|
low = pivot_0;
|
|
high = pivot_1;
|
|
q = aggregate_gt_pivot_0.value;
|
|
} else {
|
|
// case 3: pivot_0 rejected, pivot_1 rejected
|
|
low = pivot_1;
|
|
q = aggregate_gt_pivot_1.value;
|
|
}
|
|
} while (low < high);
|
|
__syncthreads();
|
|
if (tx == 0) {
|
|
output[bx] = sampled_id;
|
|
}
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
|
|
typename DType, typename IdType>
|
|
__global__ void TopPSamplingFromProbKernel(DType* probs, IdType* output, IdType* indices,
|
|
float* top_p_arr, float top_p_val, uint32_t d,
|
|
uint64_t philox_seed, uint64_t philox_offset) {
|
|
const uint32_t batch_size = gridDim.x;
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
curandStatePhilox4_32_10_t state;
|
|
curand_init(philox_seed, bx, philox_offset, &state);
|
|
const uint32_t row_idx = indices == nullptr ? bx : indices[bx];
|
|
float top_p = (top_p_arr == nullptr) ? top_p_val : top_p_arr[row_idx];
|
|
|
|
extern __shared__ __align__(
|
|
alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
|
|
uint8_t smem_sampling[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
|
|
smem_sampling);
|
|
|
|
vec_t<float, VEC_SIZE> probs_vec;
|
|
float aggregate;
|
|
float q = 1;
|
|
double low = 0, high = 1.f;
|
|
int sampled_id;
|
|
do {
|
|
temp_storage.sampled_id = d;
|
|
__syncthreads();
|
|
float u = curand_uniform(&state) * q;
|
|
aggregate = 0;
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM,
|
|
DETERMINISTIC>(
|
|
i, d, [&](float x) { return x > low; }, u, probs_vec, aggregate, &temp_storage);
|
|
if (aggregate > u) {
|
|
break;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
sampled_id = temp_storage.sampled_id;
|
|
if (sampled_id == d) {
|
|
// NOTE(Zihao): this would happen when u is very close to 1
|
|
// and the sum of probabilities is smaller than u
|
|
// In this case, we use the last valid index as the sampled id
|
|
sampled_id = temp_storage.last_valid_id;
|
|
}
|
|
double pivot_0 = probs[row_idx * d + sampled_id];
|
|
double pivot_1 = (pivot_0 + high) / 2;
|
|
|
|
float aggregate_gt_pivot_0 = 0, aggregate_gt_pivot_1 = 0;
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
float probs_gt_pivot_0[VEC_SIZE], probs_gt_pivot_1[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_gt_pivot_0[j] = (probs_vec[j] > pivot_0) ? probs_vec[j] : 0;
|
|
probs_gt_pivot_1[j] = (probs_vec[j] > pivot_1) ? probs_vec[j] : 0;
|
|
}
|
|
|
|
aggregate_gt_pivot_0 += BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_0);
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.value = aggregate_gt_pivot_0;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_0 = temp_storage.block_aggregate.value;
|
|
|
|
aggregate_gt_pivot_1 += BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_1);
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.value = aggregate_gt_pivot_1;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_1 = temp_storage.block_aggregate.value;
|
|
}
|
|
if (aggregate_gt_pivot_0 < top_p) {
|
|
// case 1: pivot_0 accepted
|
|
break;
|
|
}
|
|
if (aggregate_gt_pivot_1 < top_p) {
|
|
// case 2: pivot_0 rejected, pivot_1 accepted
|
|
low = pivot_0;
|
|
high = pivot_1;
|
|
q = aggregate_gt_pivot_0;
|
|
} else {
|
|
// case 3: pivot_0 rejected, pivot_1 rejected
|
|
low = pivot_1;
|
|
q = aggregate_gt_pivot_1;
|
|
}
|
|
} while (low < high);
|
|
__syncthreads();
|
|
if (tx == 0) {
|
|
output[bx] = sampled_id;
|
|
}
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
|
|
typename DType, typename IdType>
|
|
__global__ void MinPSamplingFromProbKernel(DType* probs, float* min_p_arr, IdType* output,
|
|
IdType* indices, float min_p_val, uint32_t d,
|
|
uint64_t philox_seed, uint64_t philox_offset) {
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
float p = (min_p_arr == nullptr) ? min_p_val : min_p_arr[bx];
|
|
curandStatePhilox4_32_10_t state;
|
|
curand_init(philox_seed, bx, philox_offset, &state);
|
|
const uint32_t row_idx = indices == nullptr ? bx : indices[bx];
|
|
|
|
extern __shared__ __align__(
|
|
alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
|
|
uint8_t smem_sampling[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
|
|
smem_sampling);
|
|
|
|
float max_val = GetMaxValue<VEC_SIZE, BLOCK_THREADS, REDUCE_ALGORITHM,
|
|
SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>>(
|
|
probs, row_idx, d, temp_storage);
|
|
float pivot = max_val * p;
|
|
|
|
vec_t<float, VEC_SIZE> probs_vec;
|
|
float aggregate_gt_pivot = 0;
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
float probs_gt_pivot[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_gt_pivot[j] = (probs_vec[j] >= pivot) ? probs_vec[j] : 0;
|
|
}
|
|
|
|
aggregate_gt_pivot += BlockReduce<float, BLOCK_THREADS>(temp_storage.block_prim.reduce)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot);
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.value = aggregate_gt_pivot;
|
|
}
|
|
__syncthreads();
|
|
}
|
|
|
|
float aggregate = 0;
|
|
float q = temp_storage.block_aggregate.value;
|
|
|
|
int sampled_id;
|
|
temp_storage.sampled_id = d;
|
|
__syncthreads();
|
|
float u = curand_uniform(&state) * q;
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM,
|
|
DETERMINISTIC>(
|
|
i, d, [&](float x) { return x >= pivot; }, u, probs_vec, aggregate, &temp_storage);
|
|
if (aggregate > u) {
|
|
break;
|
|
}
|
|
}
|
|
sampled_id = temp_storage.sampled_id;
|
|
if (sampled_id == d) {
|
|
// NOTE(Zihao): this would happen when u is very close to 1
|
|
// and the sum of probabilities is smaller than u
|
|
// In this case, we use the last valid index as the sampled id
|
|
sampled_id = temp_storage.last_valid_id;
|
|
}
|
|
output[bx] = sampled_id;
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
|
|
typename DType, typename IdType>
|
|
__global__ void TopKTopPSamplingFromProbKernel(DType* probs, IdType* top_k_arr, float* top_p_arr,
|
|
IdType* output, IdType* indices, IdType top_k_val,
|
|
float top_p_val, uint32_t d, uint64_t philox_seed,
|
|
uint64_t philox_offset) {
|
|
const uint32_t batch_size = gridDim.x;
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
curandStatePhilox4_32_10_t state;
|
|
curand_init(philox_seed, bx, philox_offset, &state);
|
|
const uint32_t row_idx = indices == nullptr ? bx : indices[bx];
|
|
const uint32_t k = top_k_arr == nullptr ? top_k_val : top_k_arr[row_idx];
|
|
const float p = top_p_arr == nullptr ? top_p_val : top_p_arr[row_idx];
|
|
|
|
extern __shared__ __align__(
|
|
alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
|
|
uint8_t smem_sampling[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
|
|
smem_sampling);
|
|
|
|
vec_t<float, VEC_SIZE> probs_vec;
|
|
float aggregate;
|
|
float q = 1;
|
|
double low = 0, high = 1.f;
|
|
int sampled_id;
|
|
do {
|
|
temp_storage.sampled_id = d;
|
|
__syncthreads();
|
|
float u = curand_uniform(&state) * q;
|
|
aggregate = 0;
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM,
|
|
DETERMINISTIC>(
|
|
i, d, [&](float x) { return x > low; }, u, probs_vec, aggregate, &temp_storage);
|
|
if (aggregate > u) {
|
|
break;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
sampled_id = temp_storage.sampled_id;
|
|
if (sampled_id == d) {
|
|
// NOTE(Zihao): this would happen when u is very close to 1
|
|
// and the sum of probabilities is smaller than u
|
|
// In this case, we use the last valid index as the sampled id
|
|
sampled_id = temp_storage.last_valid_id;
|
|
}
|
|
double pivot_0 = probs[row_idx * d + sampled_id];
|
|
double pivot_1 = (pivot_0 + high) / 2;
|
|
|
|
ValueCount<float> aggregate_gt_pivot_0{0, 0}, aggregate_gt_pivot_1{0, 0};
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + (i * BLOCK_THREADS + tx) * VEC_SIZE);
|
|
}
|
|
|
|
ValueCount<float> probs_gt_pivot_0[VEC_SIZE], probs_gt_pivot_1[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_gt_pivot_0[j] = {
|
|
(probs_vec[j] > pivot_0) ? probs_vec[j] : 0,
|
|
(probs_vec[j] > pivot_0 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
|
|
probs_gt_pivot_1[j] = {
|
|
(probs_vec[j] > pivot_1) ? probs_vec[j] : 0,
|
|
(probs_vec[j] > pivot_1 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
|
|
}
|
|
|
|
aggregate_gt_pivot_0 +=
|
|
BlockReduce<ValueCount<float>, BLOCK_THREADS>(temp_storage.block_prim.reduce_value_count)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_0);
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.pair = aggregate_gt_pivot_0;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_0 = temp_storage.block_aggregate.pair;
|
|
|
|
aggregate_gt_pivot_1 +=
|
|
BlockReduce<ValueCount<float>, BLOCK_THREADS>(temp_storage.block_prim.reduce_value_count)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_1);
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.pair = aggregate_gt_pivot_1;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_1 = temp_storage.block_aggregate.pair;
|
|
}
|
|
if (aggregate_gt_pivot_0.count < k && aggregate_gt_pivot_0.value < p) {
|
|
// case 1: pivot_0 accepted
|
|
break;
|
|
}
|
|
if (aggregate_gt_pivot_1.count < k && aggregate_gt_pivot_1.value < p) {
|
|
// case 2: pivot_0 rejected, pivot_1 accepted
|
|
low = pivot_0;
|
|
high = pivot_1;
|
|
q = aggregate_gt_pivot_0.value;
|
|
} else {
|
|
// case 3: pivot_0 rejected, pivot_1 rejected
|
|
low = pivot_1;
|
|
q = aggregate_gt_pivot_1.value;
|
|
}
|
|
} while (low < high);
|
|
__syncthreads();
|
|
if (tx == 0) {
|
|
output[bx] = sampled_id;
|
|
}
|
|
}
|
|
|
|
template <typename DType>
|
|
cudaError_t OnlineSoftmax(DType* logits, DType* output, uint32_t batch_size, uint32_t d,
|
|
DType* temperature_arr, DType temperature_val, void* workspace_buffer,
|
|
size_t workspace_buffer_size_in_bytes, bool enable_pdl,
|
|
cudaStream_t stream = 0) {
|
|
constexpr uint32_t SMALL_BATCH_THRESHOLD = 128;
|
|
constexpr uint32_t LARGE_VOCAB_THRESHOLD = 24576;
|
|
constexpr uint32_t DEFAULT_SLICE_SIZE = 8192;
|
|
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
|
|
auto compute_capacity = GetCudaComputeCapability();
|
|
|
|
DISPATCH_COMPUTE_CAP_NUM_THREADS(
|
|
compute_capacity, BLOCK_THREADS, {DISPATCH_ALIGNED_VEC_SIZE(vec_size, VEC_SIZE, {
|
|
if (batch_size <= SMALL_BATCH_THRESHOLD && d >= LARGE_VOCAB_THRESHOLD) {
|
|
// Path A: Vocab-Splitting Strategy for small-batch & large-vocab
|
|
uint32_t num_slices = ceil_div(d, DEFAULT_SLICE_SIZE);
|
|
|
|
const size_t partial_buffer_size = batch_size * num_slices * sizeof(PartialSoftmaxResult);
|
|
if (workspace_buffer_size_in_bytes < partial_buffer_size) {
|
|
return cudaErrorInvalidValue;
|
|
}
|
|
|
|
AlignedAllocator allocator(workspace_buffer, workspace_buffer_size_in_bytes);
|
|
auto partial_results = allocator.aligned_alloc<PartialSoftmaxResult>(
|
|
partial_buffer_size, alignof(PartialSoftmaxResult), "softmax_workspace");
|
|
|
|
// Phase 1: Map-Reduce across vocab slices
|
|
dim3 phase1_nblks(batch_size, num_slices);
|
|
dim3 phase1_nthrs(BLOCK_THREADS);
|
|
size_t smem_size = sizeof(OnlineSoftmaxTempStorage<BLOCK_THREADS>);
|
|
|
|
auto phase1_kernel = OnlineSoftmaxMapKernel<BLOCK_THREADS, VEC_SIZE, DType>;
|
|
void* phase1_args[] = {&logits, &partial_results, &temperature_arr, &temperature_val,
|
|
&d, &num_slices};
|
|
|
|
FLASHINFER_CUDA_CALL(cudaFuncSetAttribute(
|
|
phase1_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
|
|
if (enable_pdl) {
|
|
cudaLaunchAttribute attribute[1];
|
|
attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
|
attribute[0].val.programmaticStreamSerializationAllowed = 1;
|
|
|
|
cudaLaunchConfig_t config;
|
|
config.gridDim = phase1_nblks;
|
|
config.blockDim = phase1_nthrs;
|
|
config.dynamicSmemBytes = smem_size;
|
|
config.stream = stream;
|
|
config.attrs = attribute;
|
|
config.numAttrs = 1;
|
|
|
|
FLASHINFER_CUDA_CALL(cudaLaunchKernelEx(&config, phase1_kernel, logits, partial_results,
|
|
temperature_arr, temperature_val, d,
|
|
num_slices));
|
|
} else {
|
|
FLASHINFER_CUDA_CALL(cudaLaunchKernel((void*)phase1_kernel, phase1_nblks, phase1_nthrs,
|
|
phase1_args, smem_size, stream));
|
|
}
|
|
|
|
// Phase 2: Final reduction and apply normalization
|
|
dim3 phase2_nblks(batch_size);
|
|
dim3 phase2_nthrs(BLOCK_THREADS);
|
|
|
|
auto phase2_kernel = OnlineSoftmaxReduceKernel<BLOCK_THREADS, VEC_SIZE, DType>;
|
|
void* phase2_args[] = {&logits, &output, &partial_results, &temperature_arr,
|
|
&temperature_val, &d, &num_slices};
|
|
|
|
FLASHINFER_CUDA_CALL(cudaFuncSetAttribute(
|
|
phase2_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
|
|
if (enable_pdl) {
|
|
cudaLaunchAttribute attribute[1];
|
|
attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
|
attribute[0].val.programmaticStreamSerializationAllowed = 1;
|
|
|
|
cudaLaunchConfig_t config;
|
|
config.gridDim = phase2_nblks;
|
|
config.blockDim = phase2_nthrs;
|
|
config.dynamicSmemBytes = smem_size;
|
|
config.stream = stream;
|
|
config.attrs = attribute;
|
|
config.numAttrs = 1;
|
|
|
|
FLASHINFER_CUDA_CALL(cudaLaunchKernelEx(&config, phase2_kernel, logits, output,
|
|
partial_results, temperature_arr,
|
|
temperature_val, d, num_slices));
|
|
} else {
|
|
FLASHINFER_CUDA_CALL(cudaLaunchKernel((void*)phase2_kernel, phase2_nblks, phase2_nthrs,
|
|
phase2_args, smem_size, stream));
|
|
}
|
|
} else {
|
|
// Path B: Single-Block Strategy
|
|
// Switch input cache
|
|
uint32_t cache_threshold;
|
|
if (batch_size <= 16) {
|
|
cache_threshold = 4096;
|
|
} else if (batch_size <= 32) {
|
|
cache_threshold = 2048;
|
|
} else {
|
|
cache_threshold = 0;
|
|
}
|
|
const bool cache_input = d <= cache_threshold;
|
|
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&logits, &output, &temperature_arr, &temperature_val, &d};
|
|
|
|
const size_t smem_logits_bytes = (round_up(d, VEC_SIZE) + VEC_SIZE) * sizeof(DType);
|
|
|
|
uint32_t smem_size = sizeof(OnlineSoftmaxTempStorage<BLOCK_THREADS>) +
|
|
(cache_input ? smem_logits_bytes : 0);
|
|
|
|
DISPATCH_SOFTMAX_CACHE_INPUT(cache_input, CACHE_INPUT, {
|
|
auto kernel = OnlineSoftmaxFusedKernel<BLOCK_THREADS, VEC_SIZE, DType, CACHE_INPUT>;
|
|
FLASHINFER_CUDA_CALL(cudaFuncSetAttribute(
|
|
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
|
|
if (enable_pdl) {
|
|
cudaLaunchAttribute attribute[1];
|
|
attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
|
attribute[0].val.programmaticStreamSerializationAllowed = 1;
|
|
|
|
cudaLaunchConfig_t config;
|
|
config.gridDim = nblks;
|
|
config.blockDim = nthrs;
|
|
config.dynamicSmemBytes = smem_size;
|
|
config.stream = stream;
|
|
config.attrs = attribute;
|
|
config.numAttrs = 1;
|
|
|
|
FLASHINFER_CUDA_CALL(cudaLaunchKernelEx(&config, kernel, logits, output,
|
|
temperature_arr, temperature_val, d));
|
|
} else {
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
}
|
|
});
|
|
}
|
|
})});
|
|
return cudaSuccess;
|
|
}
|
|
|
|
template <typename T, typename IdType>
|
|
cudaError_t SamplingFromLogits(T* logits, IdType* output, IdType* indices, uint32_t batch_size,
|
|
uint32_t d, bool deterministic, uint64_t philox_seed,
|
|
uint64_t philox_offset, cudaStream_t stream = 0) {
|
|
constexpr uint32_t BLOCK_THREADS = 1024;
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&logits, &output, &indices, &d, &philox_seed, &philox_offset};
|
|
const uint32_t smem_size = sizeof(
|
|
typename BlockReduce<DataAndIndex<T, IdType>, BLOCK_THREADS, REDUCE_ALGO>::TempStorage);
|
|
|
|
DISPATCH_ALIGNED_VEC_SIZE(
|
|
vec_size, VEC_SIZE, {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
|
|
auto kernel = SamplingFromLogitsKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO, VEC_SIZE,
|
|
DETERMINISTIC, T, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
})});
|
|
return cudaSuccess;
|
|
}
|
|
|
|
template <typename T, typename IdType>
|
|
cudaError_t SamplingFromProb(T* probs, IdType* output, IdType* indices, uint32_t batch_size,
|
|
uint32_t d, bool deterministic, uint64_t philox_seed,
|
|
uint64_t philox_offset, cudaStream_t stream = 0) {
|
|
constexpr uint32_t BLOCK_THREADS = 1024;
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&probs, &output, &indices, &d, &philox_seed, &philox_offset};
|
|
const uint32_t smem_size = sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
|
|
|
|
DISPATCH_ALIGNED_VEC_SIZE(
|
|
vec_size, VEC_SIZE, {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
|
|
auto kernel = SamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO, VEC_SIZE,
|
|
DETERMINISTIC, T, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
})});
|
|
return cudaSuccess;
|
|
}
|
|
|
|
template <typename T, typename IdType>
|
|
cudaError_t TopKSamplingFromProb(T* probs, IdType* output, IdType* indices, T* top_k_arr,
|
|
uint32_t batch_size, uint32_t top_k_val, uint32_t d,
|
|
bool deterministic, uint64_t philox_seed, uint64_t philox_offset,
|
|
cudaStream_t stream = 0) {
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
|
|
|
|
auto compute_capacity = GetCudaComputeCapability();
|
|
DISPATCH_COMPUTE_CAP_NUM_THREADS(compute_capacity, BLOCK_THREADS, {
|
|
const uint32_t smem_size = sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&probs, &output, &indices, &top_k_arr,
|
|
&top_k_val, &d, &philox_seed, &philox_offset};
|
|
|
|
DISPATCH_ALIGNED_VEC_SIZE(
|
|
vec_size, VEC_SIZE, {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
|
|
auto kernel = TopKSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO, VEC_SIZE,
|
|
DETERMINISTIC, T, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
})});
|
|
return cudaSuccess;
|
|
});
|
|
}
|
|
|
|
template <typename T, typename IdType>
|
|
cudaError_t TopPSamplingFromProb(T* probs, IdType* output, IdType* indices, T* top_p_arr,
|
|
uint32_t batch_size, T top_p_val, uint32_t d, bool deterministic,
|
|
uint64_t philox_seed, uint64_t philox_offset,
|
|
cudaStream_t stream = 0) {
|
|
constexpr uint32_t BLOCK_THREADS = 1024;
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
|
|
|
|
const uint32_t smem_size = sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&probs, &output, &indices, &top_p_arr,
|
|
&top_p_val, &d, &philox_seed, &philox_offset};
|
|
|
|
DISPATCH_ALIGNED_VEC_SIZE(
|
|
vec_size, VEC_SIZE, {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
|
|
auto kernel = TopPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO, VEC_SIZE,
|
|
DETERMINISTIC, T, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
})});
|
|
return cudaSuccess;
|
|
}
|
|
|
|
template <typename T, typename IdType>
|
|
cudaError_t MinPSamplingFromProb(T* probs, T* min_p_arr, IdType* output, IdType* indices,
|
|
uint32_t batch_size, float min_p_val, uint32_t d,
|
|
bool deterministic, uint64_t philox_seed, uint64_t philox_offset,
|
|
cudaStream_t stream = 0) {
|
|
constexpr uint32_t BLOCK_THREADS = 1024;
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
|
|
|
|
const uint32_t smem_size = sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&probs, &min_p_arr, &output, &indices,
|
|
&min_p_val, &d, &philox_seed, &philox_offset};
|
|
|
|
DISPATCH_ALIGNED_VEC_SIZE(
|
|
vec_size, VEC_SIZE, {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
|
|
auto kernel = MinPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO, VEC_SIZE,
|
|
DETERMINISTIC, T, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
})});
|
|
return cudaSuccess;
|
|
}
|
|
|
|
template <typename T, typename IdType>
|
|
cudaError_t TopKTopPSamplingFromProb(T* probs, IdType* top_k_arr, T* top_p_arr, IdType* output,
|
|
IdType* indices, uint32_t batch_size, IdType top_k_val,
|
|
T top_p_val, uint32_t d, bool deterministic,
|
|
uint64_t philox_seed, uint64_t philox_offset,
|
|
cudaStream_t stream = 0) {
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(T), d);
|
|
|
|
auto compute_capacity = GetCudaComputeCapability();
|
|
DISPATCH_COMPUTE_CAP_NUM_THREADS(compute_capacity, BLOCK_THREADS, {
|
|
const uint32_t smem_size = sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&probs, &top_k_arr, &top_p_arr, &output, &indices,
|
|
&top_k_val, &top_p_val, &d, &philox_seed, &philox_offset};
|
|
|
|
DISPATCH_ALIGNED_VEC_SIZE(
|
|
vec_size, VEC_SIZE, {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
|
|
auto kernel = TopKTopPSamplingFromProbKernel<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO,
|
|
VEC_SIZE, DETERMINISTIC, T, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
})});
|
|
return cudaSuccess;
|
|
});
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM>
|
|
struct RenormTempStorage {
|
|
union {
|
|
typename BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage reduce;
|
|
typename BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage reduce_int;
|
|
typename BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>::TempStorage
|
|
reduce_value_count;
|
|
} block_prim;
|
|
struct {
|
|
float max_val;
|
|
float min_val;
|
|
float row_sum;
|
|
union {
|
|
struct {
|
|
float values[2];
|
|
};
|
|
struct {
|
|
int counts[2];
|
|
};
|
|
struct {
|
|
ValueCount<float> pairs[2];
|
|
};
|
|
} block_aggregate;
|
|
};
|
|
};
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
|
|
typename DType>
|
|
__global__ void TopPRenormProbKernel(DType* probs, DType* renormed_prob, float* top_p_arr,
|
|
float top_p_val, uint32_t d) {
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
const uint32_t row_idx = bx;
|
|
float p = top_p_arr == nullptr ? top_p_val : top_p_arr[bx];
|
|
|
|
extern __shared__ __align__(alignof(RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>))
|
|
uint8_t smem_renorm[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>&>(smem_renorm);
|
|
vec_t<float, VEC_SIZE> probs_vec;
|
|
|
|
// Fast-path: when p >= 1.0 (e.g., p == 1.0), perform simple sum and normalization
|
|
if (p >= 1.0f) {
|
|
// Stage A: per-thread float accumulation over assigned lanes (vectorized)
|
|
float thread_sum = 0.0f;
|
|
const uint32_t num_iters = ceil_div(d, BLOCK_THREADS * VEC_SIZE);
|
|
for (uint32_t i = 0; i < num_iters; ++i) {
|
|
probs_vec.fill(0.0f);
|
|
const uint32_t base_idx = (i * BLOCK_THREADS + tx) * VEC_SIZE;
|
|
if (base_idx < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + base_idx);
|
|
}
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
const uint32_t idx = base_idx + j;
|
|
if (idx < d) thread_sum += probs_vec[j];
|
|
}
|
|
}
|
|
|
|
// Block reduce (float)
|
|
float row_sum =
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Sum(thread_sum);
|
|
// Broadcast via shared
|
|
if (tx == 0) temp_storage.row_sum = row_sum;
|
|
__syncthreads();
|
|
row_sum = temp_storage.row_sum;
|
|
|
|
// Guard against zero sum
|
|
const float denom = (row_sum <= 1e-8f) ? 1.0f : row_sum;
|
|
const float normalizer = math::ptx_rcp(denom);
|
|
|
|
// Stage B: normalize and store
|
|
for (uint32_t i = 0; i < num_iters; ++i) {
|
|
probs_vec.fill(0.0f);
|
|
const uint32_t base_idx = (i * BLOCK_THREADS + tx) * VEC_SIZE;
|
|
if (base_idx < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + base_idx);
|
|
}
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
const uint32_t idx = base_idx + j;
|
|
float v = probs_vec[j];
|
|
probs_vec[j] = (idx < d) ? (v * normalizer) : 0.0f;
|
|
}
|
|
if (base_idx < d) {
|
|
probs_vec.cast_store(renormed_prob + row_idx * d + base_idx);
|
|
}
|
|
}
|
|
return; // Exit after fast-path processing
|
|
}
|
|
|
|
// Original Top-P renormalization logic
|
|
temp_storage.max_val = 0;
|
|
float max_val = GetMaxValue<VEC_SIZE, BLOCK_THREADS, REDUCE_ALGORITHM,
|
|
RenormTempStorage<BLOCK_THREADS, REDUCE_ALGORITHM>>(probs, row_idx, d,
|
|
temp_storage);
|
|
|
|
double low = 0, high = max_val;
|
|
float min_gt_low, max_le_high;
|
|
float sum_low = 1;
|
|
// f(x) = sum(probs[probs > x]), f(x) is non-increasing
|
|
// min_gt_low = min{p \in probs | p > low}, max_le_high = max{p \in probs | p <= high}
|
|
// loop invariant:
|
|
// - f(low) >= p, f(high) < p
|
|
// - f(low) > f(min_gt_low) >= f(max_le_high) == f(high)
|
|
// stopping condition
|
|
// - f(low) >= p, f(min_gt_low) == f(max_le_high) == f(high) < p
|
|
do {
|
|
double pivot_0 = (high + 2 * low) / 3;
|
|
double pivot_1 = (2 * high + low) / 3;
|
|
|
|
float aggregate_gt_pivot_0 = 0, aggregate_gt_pivot_1 = 0;
|
|
min_gt_low = high;
|
|
max_le_high = low;
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
|
|
float probs_gt_pivot_0[VEC_SIZE], probs_gt_pivot_1[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_gt_pivot_0[j] = (probs_vec[j] > pivot_0) ? probs_vec[j] : 0;
|
|
probs_gt_pivot_1[j] = (probs_vec[j] > pivot_1) ? probs_vec[j] : 0;
|
|
|
|
if (probs_vec[j] > low && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
|
|
min_gt_low = min(min_gt_low, probs_vec[j]);
|
|
}
|
|
if (probs_vec[j] <= high && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
|
|
max_le_high = max(max_le_high, probs_vec[j]);
|
|
}
|
|
}
|
|
|
|
aggregate_gt_pivot_0 +=
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_0);
|
|
__syncthreads();
|
|
|
|
aggregate_gt_pivot_1 +=
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_1);
|
|
__syncthreads();
|
|
}
|
|
min_gt_low = BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce(min_gt_low, MinReduceOp{});
|
|
__syncthreads();
|
|
max_le_high =
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce(max_le_high, MaxReduceOp{});
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.values[0] = aggregate_gt_pivot_0;
|
|
temp_storage.block_aggregate.values[1] = aggregate_gt_pivot_1;
|
|
temp_storage.min_val = min_gt_low;
|
|
temp_storage.max_val = max_le_high;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_0 = temp_storage.block_aggregate.values[0];
|
|
aggregate_gt_pivot_1 = temp_storage.block_aggregate.values[1];
|
|
min_gt_low = temp_storage.min_val;
|
|
max_le_high = temp_storage.max_val;
|
|
|
|
if (aggregate_gt_pivot_1 >= p) {
|
|
low = pivot_1;
|
|
sum_low = aggregate_gt_pivot_1;
|
|
} else if (aggregate_gt_pivot_0 >= p) {
|
|
low = pivot_0;
|
|
high = min(pivot_1, max_le_high);
|
|
sum_low = aggregate_gt_pivot_0;
|
|
} else {
|
|
high = min(pivot_0, max_le_high);
|
|
}
|
|
} while (min_gt_low != max_le_high);
|
|
|
|
float normalizer = math::ptx_rcp(max(sum_low, 1e-8));
|
|
|
|
// normalize
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_vec[j] = (probs_vec[j] > low) ? probs_vec[j] * normalizer : 0;
|
|
}
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_store(renormed_prob + row_idx * d + i * BLOCK_THREADS * VEC_SIZE +
|
|
tx * VEC_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
|
|
typename DType, typename IdType>
|
|
__global__ void TopKMaskLogitsKernel(DType* logits, DType* masked_logits, IdType* top_k_arr,
|
|
uint32_t top_k_val, uint32_t d) {
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
const uint32_t row_idx = bx;
|
|
uint32_t k = top_k_arr == nullptr ? top_k_val : top_k_arr[bx];
|
|
double pivot = -cuda::std::numeric_limits<float>::infinity();
|
|
vec_t<float, VEC_SIZE> logits_vec;
|
|
if (k < d) {
|
|
extern __shared__ __align__(alignof(RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>))
|
|
uint8_t smem_renorm[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>&>(smem_renorm);
|
|
float logits_greater_than_pivot[VEC_SIZE]; // pivot initialized to 0
|
|
|
|
auto [min_val, max_val] = GetMinMaxValue<VEC_SIZE, BLOCK_THREADS, REDUCE_ALGORITHM,
|
|
RenormTempStorage<BLOCK_THREADS, REDUCE_ALGORITHM>>(
|
|
logits, row_idx, d, temp_storage);
|
|
|
|
double low = (min_val == -cuda::std::numeric_limits<float>::infinity())
|
|
? cuda::std::numeric_limits<float>::lowest()
|
|
: min_val - 1,
|
|
high = max_val;
|
|
float min_gt_low, max_le_high;
|
|
// f(x) = len(nonzero(probs > x)), f(x) is non-increasing
|
|
// min_gt_low = min{p \in probs | p > low}, max_le_high = max{p \in probs | p <= high}
|
|
// loop invariant:
|
|
// - f(low) >= k, f(high) < k
|
|
// - f(low) > f(min_gt_low) >= f(max_le_high) == f(high)
|
|
// stopping condition: min_gt_low == max_le_high
|
|
// - f(low) >= k, f(min_gt_low) == f(max_le_high) == f(high) < k
|
|
do {
|
|
double pivot_0 = (high + 2 * low) / 3;
|
|
double pivot_1 = (2 * high + low) / 3;
|
|
|
|
int aggregate_gt_pivot_0 = 0, aggregate_gt_pivot_1 = 0;
|
|
min_gt_low = high;
|
|
max_le_high = low;
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
logits_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
logits_vec.cast_load(logits + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
int probs_gt_pivot_0_count[VEC_SIZE], probs_gt_pivot_1_count[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_gt_pivot_0_count[j] =
|
|
logits_vec[j] > pivot_0 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d;
|
|
probs_gt_pivot_1_count[j] =
|
|
logits_vec[j] > pivot_1 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d;
|
|
|
|
if (logits_vec[j] > low && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
|
|
min_gt_low = min(min_gt_low, logits_vec[j]);
|
|
}
|
|
if (logits_vec[j] <= high && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
|
|
max_le_high = max(max_le_high, logits_vec[j]);
|
|
}
|
|
}
|
|
|
|
aggregate_gt_pivot_0 +=
|
|
BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce_int)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_0_count);
|
|
__syncthreads();
|
|
|
|
aggregate_gt_pivot_1 +=
|
|
BlockReduce<int, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce_int)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_1_count);
|
|
__syncthreads();
|
|
}
|
|
min_gt_low =
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce(min_gt_low, MinReduceOp{});
|
|
__syncthreads();
|
|
max_le_high =
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce(max_le_high, MaxReduceOp{});
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.counts[0] = aggregate_gt_pivot_0;
|
|
temp_storage.block_aggregate.counts[1] = aggregate_gt_pivot_1;
|
|
temp_storage.min_val = min_gt_low;
|
|
temp_storage.max_val = max_le_high;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_0 = temp_storage.block_aggregate.counts[0];
|
|
aggregate_gt_pivot_1 = temp_storage.block_aggregate.counts[1];
|
|
min_gt_low = temp_storage.min_val;
|
|
max_le_high = temp_storage.max_val;
|
|
|
|
if (aggregate_gt_pivot_1 >= k) {
|
|
low = pivot_1;
|
|
} else if (aggregate_gt_pivot_0 >= k) {
|
|
low = pivot_0;
|
|
high = min(pivot_1, max_le_high);
|
|
} else {
|
|
high = min(pivot_0, max_le_high);
|
|
}
|
|
} while (min_gt_low != max_le_high);
|
|
pivot = low;
|
|
}
|
|
|
|
// masking
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
logits_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
logits_vec.cast_load(logits + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
logits_vec[j] =
|
|
(logits_vec[j] > pivot) ? logits_vec[j] : -cuda::std::numeric_limits<float>::infinity();
|
|
}
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
logits_vec.store(masked_logits + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE,
|
|
typename DType, typename IdType>
|
|
__global__ void TopKRenormProbKernel(DType* probs, DType* renormed_prob, IdType* top_k_arr,
|
|
uint32_t top_k_val, uint32_t d) {
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
const uint32_t row_idx = bx;
|
|
uint32_t k = top_k_arr == nullptr ? top_k_val : top_k_arr[bx];
|
|
double pivot = -cuda::std::numeric_limits<float>::infinity(), normalizer = 1;
|
|
vec_t<float, VEC_SIZE> probs_vec;
|
|
if (k < d) {
|
|
extern __shared__ __align__(alignof(RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>))
|
|
uint8_t smem_renorm[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>&>(smem_renorm);
|
|
temp_storage.max_val = 0;
|
|
|
|
float max_val = GetMaxValue<VEC_SIZE, BLOCK_THREADS, REDUCE_ALGORITHM,
|
|
RenormTempStorage<BLOCK_THREADS, REDUCE_ALGORITHM>>(
|
|
probs, row_idx, d, temp_storage);
|
|
|
|
double low = 0, high = max_val;
|
|
float min_gt_low, max_le_high;
|
|
float sum_low = 1;
|
|
// f(x) = len(nonzero(probs > x)), f(x) is non-increasing
|
|
// min_gt_low = min{p \in probs | p > low}, max_le_high = max{p \in probs | p <= high}
|
|
// loop invariant:
|
|
// - f(low) >= k, f(high) < k
|
|
// - f(low) > f(min_gt_low) >= f(max_le_high) == f(high)
|
|
// stopping condition: min_gt_low == max_le_high
|
|
// - f(low) >= k, f(min_gt_low) == f(max_le_high) == f(high) < k
|
|
do {
|
|
double pivot_0 = (high + 2 * low) / 3;
|
|
double pivot_1 = (2 * high + low) / 3;
|
|
|
|
ValueCount<float> aggregate_gt_pivot_0{0, 0}, aggregate_gt_pivot_1{0, 0};
|
|
min_gt_low = high;
|
|
max_le_high = low;
|
|
#pragma unroll 1
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
ValueCount<float> probs_gt_pivot_0_pair[VEC_SIZE], probs_gt_pivot_1_pair[VEC_SIZE];
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_gt_pivot_0_pair[j] = {
|
|
(probs_vec[j] > pivot_0) ? probs_vec[j] : 0,
|
|
(probs_vec[j] > pivot_0 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
|
|
probs_gt_pivot_1_pair[j] = {
|
|
(probs_vec[j] > pivot_1) ? probs_vec[j] : 0,
|
|
(probs_vec[j] > pivot_1 && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d)};
|
|
|
|
if (probs_vec[j] > low && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
|
|
min_gt_low = min(min_gt_low, probs_vec[j]);
|
|
}
|
|
if (probs_vec[j] <= high && (i * BLOCK_THREADS + tx) * VEC_SIZE + j < d) {
|
|
max_le_high = max(max_le_high, probs_vec[j]);
|
|
}
|
|
}
|
|
|
|
aggregate_gt_pivot_0 += BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>(
|
|
temp_storage.block_prim.reduce_value_count)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_0_pair);
|
|
__syncthreads();
|
|
|
|
aggregate_gt_pivot_1 += BlockReduce<ValueCount<float>, BLOCK_THREADS, REDUCE_ALGORITHM>(
|
|
temp_storage.block_prim.reduce_value_count)
|
|
.Sum<VEC_SIZE>(probs_gt_pivot_1_pair);
|
|
__syncthreads();
|
|
}
|
|
min_gt_low =
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce(min_gt_low, MinReduceOp{});
|
|
__syncthreads();
|
|
max_le_high =
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Reduce(max_le_high, MaxReduceOp{});
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.pairs[0] = aggregate_gt_pivot_0;
|
|
temp_storage.block_aggregate.pairs[1] = aggregate_gt_pivot_1;
|
|
temp_storage.min_val = min_gt_low;
|
|
temp_storage.max_val = max_le_high;
|
|
}
|
|
__syncthreads();
|
|
aggregate_gt_pivot_0 = temp_storage.block_aggregate.pairs[0];
|
|
aggregate_gt_pivot_1 = temp_storage.block_aggregate.pairs[1];
|
|
min_gt_low = temp_storage.min_val;
|
|
max_le_high = temp_storage.max_val;
|
|
|
|
if (aggregate_gt_pivot_1.count >= k) {
|
|
low = pivot_1;
|
|
sum_low = float(aggregate_gt_pivot_1.value);
|
|
} else if (aggregate_gt_pivot_0.count >= k) {
|
|
low = pivot_0;
|
|
high = min(pivot_1, max_le_high);
|
|
sum_low = float(aggregate_gt_pivot_0.value);
|
|
} else {
|
|
high = min(pivot_0, max_le_high);
|
|
}
|
|
} while (min_gt_low != max_le_high);
|
|
|
|
normalizer = math::ptx_rcp(max(sum_low, 1e-8));
|
|
pivot = low;
|
|
}
|
|
|
|
// normalize
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
probs_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.cast_load(probs + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
probs_vec[j] = (probs_vec[j] > pivot) ? probs_vec[j] * normalizer : 0;
|
|
}
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
probs_vec.store(renormed_prob + row_idx * d + i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DType>
|
|
cudaError_t TopPRenormProb(DType* probs, DType* renormed_prob, float* top_p_arr,
|
|
uint32_t batch_size, float top_p_val, uint32_t d,
|
|
cudaStream_t stream = 0) {
|
|
constexpr uint32_t BLOCK_THREADS = 1024;
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
|
|
|
|
const uint32_t smem_size = sizeof(RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&probs, &renormed_prob, &top_p_arr, &top_p_val, &d};
|
|
DISPATCH_ALIGNED_VEC_SIZE(vec_size, VEC_SIZE, {
|
|
auto kernel = TopPRenormProbKernel<BLOCK_THREADS, REDUCE_ALGO, VEC_SIZE, DType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
FLASHINFER_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
});
|
|
return cudaSuccess;
|
|
}
|
|
|
|
template <typename DType, typename IdType>
|
|
cudaError_t TopKRenormProb(DType* probs, DType* renormed_prob, IdType* top_k_arr,
|
|
uint32_t batch_size, uint32_t top_k_val, uint32_t d,
|
|
cudaStream_t stream = 0) {
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
|
|
|
|
auto compute_capacity = GetCudaComputeCapability();
|
|
DISPATCH_COMPUTE_CAP_NUM_THREADS(compute_capacity, BLOCK_THREADS, {
|
|
const uint32_t smem_size = sizeof(RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&probs, &renormed_prob, &top_k_arr, &top_k_val, &d};
|
|
DISPATCH_ALIGNED_VEC_SIZE(vec_size, VEC_SIZE, {
|
|
auto kernel = TopKRenormProbKernel<BLOCK_THREADS, REDUCE_ALGO, VEC_SIZE, DType, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
FLASHINFER_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
});
|
|
return cudaSuccess;
|
|
});
|
|
}
|
|
|
|
template <typename DType, typename IdType>
|
|
cudaError_t TopKMaskLogits(DType* logits, DType* masked_logits, IdType* top_k_arr,
|
|
uint32_t batch_size, uint32_t top_k_val, uint32_t d,
|
|
cudaStream_t stream = 0) {
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
|
|
|
|
auto compute_capacity = GetCudaComputeCapability();
|
|
DISPATCH_COMPUTE_CAP_NUM_THREADS(compute_capacity, BLOCK_THREADS, {
|
|
const uint32_t smem_size = sizeof(RenormTempStorage<BLOCK_THREADS, REDUCE_ALGO>);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&logits, &masked_logits, &top_k_arr, &top_k_val, &d};
|
|
DISPATCH_ALIGNED_VEC_SIZE(vec_size, VEC_SIZE, {
|
|
auto kernel = TopKMaskLogitsKernel<BLOCK_THREADS, REDUCE_ALGO, VEC_SIZE, DType, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
FLASHINFER_CUDA_CALL(cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
});
|
|
return cudaSuccess;
|
|
});
|
|
}
|
|
|
|
template <uint32_t BLOCK_THREADS, BlockScanAlgorithm SCAN_ALGORITHM,
|
|
BlockReduceAlgorithm REDUCE_ALGORITHM, uint32_t VEC_SIZE, bool DETERMINISTIC,
|
|
typename DType, typename IdType>
|
|
__global__ void ChainSpeculativeSampling(DType* draft_probs, IdType* draft_token_ids,
|
|
DType* target_probs, IdType* output_token_ids,
|
|
IdType* output_accepted_token_num,
|
|
IdType* output_emitted_draft_token_num,
|
|
uint32_t num_speculative_tokens, uint32_t d,
|
|
uint64_t philox_seed, uint64_t philox_offset) {
|
|
const uint32_t bx = blockIdx.x, tx = threadIdx.x;
|
|
const uint32_t row_idx = bx;
|
|
curandStatePhilox4_32_10_t curand_state;
|
|
curand_init(philox_seed, bx, philox_offset, &curand_state);
|
|
|
|
extern __shared__ __align__(
|
|
alignof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>))
|
|
uint8_t smem_sampling[];
|
|
auto& temp_storage =
|
|
reinterpret_cast<SamplingTempStorage<BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM>&>(
|
|
smem_sampling);
|
|
|
|
uint32_t pos = num_speculative_tokens;
|
|
for (uint32_t i = 0; i < num_speculative_tokens; ++i) {
|
|
IdType draft_id = draft_token_ids[row_idx * num_speculative_tokens + i];
|
|
float q = target_probs[(row_idx * (num_speculative_tokens + 1) + i) * d + draft_id],
|
|
p = draft_probs[(row_idx * num_speculative_tokens + i) * d + draft_id];
|
|
float u = curand_uniform(&curand_state);
|
|
if (u * p < q) {
|
|
// accept the draft models output
|
|
output_token_ids[row_idx * (num_speculative_tokens + 1) + i] = draft_id;
|
|
} else {
|
|
pos = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
uint32_t emitted_token_num = pos;
|
|
uint32_t accepted_token_num = pos;
|
|
for (uint32_t i = pos; i < num_speculative_tokens; ++i) {
|
|
int draft_id = draft_token_ids[row_idx * num_speculative_tokens + i];
|
|
float q = target_probs[(row_idx * (num_speculative_tokens + 1) + i) * d + draft_id],
|
|
p = draft_probs[(row_idx * num_speculative_tokens + i) * d + draft_id];
|
|
float u = curand_uniform(&curand_state);
|
|
if (u * p < q) {
|
|
++accepted_token_num;
|
|
}
|
|
}
|
|
|
|
if (tx == 0) {
|
|
output_accepted_token_num[row_idx] += accepted_token_num;
|
|
output_emitted_draft_token_num[row_idx] += emitted_token_num;
|
|
}
|
|
|
|
// sample from relu(target_probs - draft_probs)
|
|
float sum_relu_q_minus_p = 0;
|
|
vec_t<float, VEC_SIZE> q_vec, p_vec;
|
|
float relu_q_minus_p[VEC_SIZE];
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
q_vec.fill(0);
|
|
p_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
q_vec.cast_load(target_probs + (row_idx * (num_speculative_tokens + 1) + pos) * d +
|
|
i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
if (pos != num_speculative_tokens) {
|
|
// there is no draft_probs for the bonus token
|
|
p_vec.cast_load(draft_probs + (row_idx * num_speculative_tokens + pos) * d +
|
|
i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
}
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
relu_q_minus_p[j] = max(q_vec[j] - p_vec[j], 0.0f);
|
|
}
|
|
sum_relu_q_minus_p +=
|
|
BlockReduce<float, BLOCK_THREADS, REDUCE_ALGORITHM>(temp_storage.block_prim.reduce)
|
|
.Sum<VEC_SIZE>(relu_q_minus_p);
|
|
__syncthreads();
|
|
}
|
|
if (tx == 0) {
|
|
temp_storage.block_aggregate.value = sum_relu_q_minus_p;
|
|
}
|
|
// init the first rejected token to d
|
|
temp_storage.sampled_id = d;
|
|
__syncthreads();
|
|
sum_relu_q_minus_p = temp_storage.block_aggregate.value;
|
|
float u = curand_uniform(&curand_state) * sum_relu_q_minus_p;
|
|
|
|
float aggregate_relu_q_minus_p(0);
|
|
#pragma unroll 2
|
|
for (uint32_t i = 0; i < ceil_div(d, BLOCK_THREADS * VEC_SIZE); ++i) {
|
|
q_vec.fill(0);
|
|
p_vec.fill(0);
|
|
if ((i * BLOCK_THREADS + tx) * VEC_SIZE < d) {
|
|
q_vec.cast_load(target_probs + (row_idx * (num_speculative_tokens + 1) + pos) * d +
|
|
i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
if (pos != num_speculative_tokens) {
|
|
// there is no draft_probs for the bonus token
|
|
p_vec.cast_load(draft_probs + (row_idx * num_speculative_tokens + pos) * d +
|
|
i * BLOCK_THREADS * VEC_SIZE + tx * VEC_SIZE);
|
|
}
|
|
}
|
|
|
|
vec_t<float, VEC_SIZE> relu_q_minus_p_vec;
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
|
|
relu_q_minus_p_vec[j] = max(q_vec[j] - p_vec[j], 0.0f);
|
|
}
|
|
|
|
DeviceSamplingFromProb<VEC_SIZE, BLOCK_THREADS, SCAN_ALGORITHM, REDUCE_ALGORITHM,
|
|
DETERMINISTIC>(
|
|
i, d, [&](float x) { return x > 0; }, u, relu_q_minus_p_vec, aggregate_relu_q_minus_p,
|
|
&temp_storage);
|
|
if (aggregate_relu_q_minus_p > u) {
|
|
break;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
int sampled_id = temp_storage.sampled_id;
|
|
if (sampled_id == d) {
|
|
// NOTE(Zihao): this would happen when u is very close to 1
|
|
// and the sum of probabilities is smaller than u
|
|
// In this case, we use the last valid index as the sampled id
|
|
sampled_id = temp_storage.last_valid_id;
|
|
}
|
|
// set the first rejected token
|
|
output_token_ids[row_idx * (num_speculative_tokens + 1) + pos] = sampled_id;
|
|
// move to the next token
|
|
pos++;
|
|
|
|
// pad remaining tokens with -1
|
|
for (; pos < num_speculative_tokens + 1; ++pos) {
|
|
output_token_ids[row_idx * (num_speculative_tokens + 1) + pos] = -1;
|
|
}
|
|
}
|
|
|
|
template <typename DType, typename IdType>
|
|
cudaError_t ChainSpeculativeSampling(DType* draft_probs, IdType* draft_token_ids,
|
|
DType* target_probs, IdType* output_token_ids,
|
|
IdType* output_accepted_token_num,
|
|
IdType* output_emitted_draft_token_num, uint32_t batch_size,
|
|
uint32_t num_speculative_tokens, uint32_t d,
|
|
bool deterministic, uint64_t philox_seed,
|
|
uint64_t philox_offset, cudaStream_t stream = 0) {
|
|
constexpr uint32_t BLOCK_THREADS = 1024;
|
|
const uint32_t vec_size = std::gcd(16 / sizeof(DType), d);
|
|
|
|
const uint32_t smem_size = sizeof(SamplingTempStorage<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO>);
|
|
dim3 nblks(batch_size);
|
|
dim3 nthrs(BLOCK_THREADS);
|
|
void* args[] = {&draft_probs,
|
|
&draft_token_ids,
|
|
&target_probs,
|
|
&output_token_ids,
|
|
&output_accepted_token_num,
|
|
&output_emitted_draft_token_num,
|
|
&num_speculative_tokens,
|
|
&d,
|
|
&philox_seed,
|
|
&philox_offset};
|
|
DISPATCH_ALIGNED_VEC_SIZE(
|
|
vec_size, VEC_SIZE, {DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, {
|
|
auto kernel = ChainSpeculativeSampling<BLOCK_THREADS, SCAN_ALGO, REDUCE_ALGO, VEC_SIZE,
|
|
DETERMINISTIC, DType, IdType>;
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
|
FLASHINFER_CUDA_CALL(
|
|
cudaLaunchKernel((void*)kernel, nblks, nthrs, args, smem_size, stream));
|
|
})});
|
|
return cudaSuccess;
|
|
}
|
|
|
|
} // namespace sampling
|
|
|
|
} // namespace flashinfer
|
|
|
|
#endif // FLASHINFER_SAMPLING_CUH_
|