sglang_v0.5.2/pytorch_2.8.0/test/jit/test_functional_blocks.py

54 lines
1.6 KiB
Python

# Owner(s): ["oncall: jit"]
import os
import sys
import torch
from torch.testing import FileCheck
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.common_utils import raise_on_run_directly
from torch.testing._internal.jit_utils import JitTestCase
class TestFunctionalBlocks(JitTestCase):
def test_subgraph_creation(self):
def fn(x, y, z):
x = x + 1
y = y + 1
z = z + 1
z.add_(2)
z = z * z
y = y * z
if y < 2:
y = y + 5
return x + y + z
graph = torch.jit.script(fn).graph
self.run_pass("create_functional_graphs", graph)
# all uses of x and y should be sunk
FileCheck().check(r"%x").check_not(r"%x").check("FunctionalGraph").check(
r"%x"
).run(graph)
FileCheck().check(r"%y").check_not(r"%y").check("FunctionalGraph").check(
r"%y"
).run(graph)
# Don't allow any outputs which escape scope, so there is one final addition in the graph
FileCheck().check("Tensor = prim::Functional").check_next("aten::add").run(
graph
)
# z + 1, z.add_(2) considered non functional, z = z * z should be considered functional
FileCheck().check("add").check("add_").check_not("mul").check(
"FunctionalGraph"
).run(graph)
if __name__ == "__main__":
raise_on_run_directly("test/test_jit.py")