sglang_v0.5.2/sglang/sgl-kernel/tests/test_fp8_gemm.py

50 lines
1.9 KiB
Python

import pytest
import torch
from sgl_kernel import fp8_scaled_mm
def torch_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias):
o = torch.matmul(a.to(torch.float32), b.to(torch.float32))
o = o.to(torch.float32)
temp1 = o * scale_a.view(-1, 1)
temp2 = temp1 * scale_b.view(1, -1)
final = temp2.to(out_dtype)
if bias is not None:
final = final + bias.view(1, -1)
return final
def _test_accuracy_once(M, N, K, with_bias, out_dtype, device):
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
a_fp32 = (torch.rand(M, K, dtype=torch.float32, device=device) - 0.5) * 2 * fp8_max
a_fp8 = a_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
b_fp32 = (torch.rand(N, K, dtype=torch.float32, device=device) - 0.5) * 2 * fp8_max
b_fp8 = b_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
scale_a = torch.randn((M,), device=device, dtype=torch.float32) * 0.001
scale_b = torch.randn((N,), device=device, dtype=torch.float32) * 0.001
if with_bias:
bias = torch.randn((N,), device=device, dtype=out_dtype)
else:
bias = None
b_fp8 = b_fp8.t()
o = torch_scaled_mm(a_fp8, b_fp8, scale_a, scale_b, out_dtype, bias)
o1 = fp8_scaled_mm(a_fp8, b_fp8, scale_a, scale_b, out_dtype, bias)
rtol = 0.02
atol = 1
torch.testing.assert_close(o, o1, rtol=rtol, atol=atol)
print(f"M={M}, N={N}, K={K}, with_bias={with_bias}, out_dtype={out_dtype}: OK")
@pytest.mark.parametrize("M", [1, 128, 512, 1024, 4096])
@pytest.mark.parametrize("N", [16, 128, 512, 1024, 4096])
@pytest.mark.parametrize("K", [512, 1024, 4096, 8192, 16384])
@pytest.mark.parametrize("with_bias", [True, False])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
def test_accuracy(M, N, K, with_bias, out_dtype):
_test_accuracy_once(M, N, K, with_bias, out_dtype, "cuda")
if __name__ == "__main__":
pytest.main([__file__])