sglang_v0.5.2/sglang/test/srt/test_fa3.py

262 lines
8.2 KiB
Python

import os
import unittest
from types import SimpleNamespace
import requests
from sglang.srt.utils import get_device_sm, kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3,
DEFAULT_MODEL_NAME_FOR_TEST_MLA,
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
GSM_DATASET_PATH = None
# In case of some machine lack internet connection, we can set OFFLINE_MODE to True.
OFFLINE_MODE = False
# Change the path below when OFFLINE_MODE is True.
OFFLINE_PATH_DICT = {
DEFAULT_MODEL_NAME_FOR_TEST: "/shared/public/elr-models/meta-llama/Meta-Llama-3.1-8B-Instruct",
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3: "/shared/public/elr-models/jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B",
DEFAULT_MODEL_NAME_FOR_TEST_MLA: "/shared/public/sharing/deepseek/dsv3-test/snapshots/",
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN: "/shared/public/sharing/deepseek/dsv3-test-NextN/snapshots/",
GSM_DATASET_PATH: "/shared/public/data/gsm8k/test.jsonl",
}
if OFFLINE_MODE:
DEFAULT_MODEL_NAME_FOR_TEST = OFFLINE_PATH_DICT[DEFAULT_MODEL_NAME_FOR_TEST]
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3 = OFFLINE_PATH_DICT[
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3
]
DEFAULT_MODEL_NAME_FOR_TEST_MLA = OFFLINE_PATH_DICT[DEFAULT_MODEL_NAME_FOR_TEST_MLA]
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN = OFFLINE_PATH_DICT[
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN
]
GSM_DATASET_PATH = OFFLINE_PATH_DICT[GSM_DATASET_PATH]
# Default server arguments shared across all tests
DEFAULT_SERVER_ARGS = [
"--trust-remote-code",
"--cuda-graph-max-bs",
"8",
"--attention-backend",
"fa3",
]
"""
Integration test for python/sglang/srt/layers/attention/flashattention_backend.py
"""
@unittest.skipIf(get_device_sm() < 90, "Test requires CUDA SM 90 or higher")
class BaseFlashAttentionTest(CustomTestCase):
"""Base class for testing FlashAttention3."""
model = DEFAULT_MODEL_NAME_FOR_TEST
base_url = DEFAULT_URL_FOR_TEST
accuracy_threshold = 0.65 # derived tests need to override this
speculative_decode = False
spec_decode_threshold = 1.0 # derived spec decoding tests need to override this
@classmethod
def get_server_args(cls):
"""Return the arguments for the server launch. Override in subclasses."""
return DEFAULT_SERVER_ARGS
@classmethod
def setUpClass(cls):
# disable deep gemm precompile to make launch server faster
# please don't do this if you want to make your inference workload faster
os.environ["SGL_JIT_DEEPGEMM_PRECOMPILE"] = "false"
os.environ["SGL_ENABLE_JIT_DEEPGEMM"] = "false"
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=cls.get_server_args(),
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_gsm8k(self):
requests.get(self.base_url + "/flush_cache")
args = SimpleNamespace(
num_shots=4,
num_questions=100,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
data_path=GSM_DATASET_PATH,
)
metrics = run_eval_few_shot_gsm8k(args)
print(f"{metrics=}")
# Use the appropriate metric key based on the test class
metric_key = "accuracy"
self.assertGreater(metrics[metric_key], self.accuracy_threshold)
if self.speculative_decode:
server_info = requests.get(self.base_url + "/get_server_info")
avg_spec_accept_length = server_info.json()["internal_states"][0][
"avg_spec_accept_length"
]
print(f"{avg_spec_accept_length=}")
self.assertGreater(avg_spec_accept_length, self.spec_decode_threshold)
class TestFlashAttention3MLA(BaseFlashAttentionTest):
"""Test FlashAttention3 with MLA, e.g. deepseek v3 test model"""
accuracy_threshold = 0.60
model = DEFAULT_MODEL_NAME_FOR_TEST_MLA
@classmethod
def get_server_args(cls):
return DEFAULT_SERVER_ARGS
class TestFlashAttention3SpeculativeDecode(BaseFlashAttentionTest):
"""Test FlashAttention3 with speculative decode enabled with Llama 3.1 8B and its eagle3 model"""
model = DEFAULT_MODEL_NAME_FOR_TEST
accuracy_threshold = 0.65
speculative_decode = True
spec_decode_threshold = 1.5
@classmethod
def get_server_args(cls):
args = DEFAULT_SERVER_ARGS
args.extend(
[
"--cuda-graph-max-bs",
"4",
"--speculative-algorithm",
"EAGLE3",
"--speculative-draft-model-path",
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3,
"--speculative-num-steps",
"3",
"--speculative-eagle-topk",
"1",
"--speculative-num-draft-tokens",
"4",
"--dtype",
"float16",
]
)
return args
class TestFlashAttention3SpeculativeDecodeTopk(BaseFlashAttentionTest):
"""Tests FlashAttention3 with enhanced speculative decoding using Llama 3.1 8B and EAGLE3.
This test will be using top-k value > 1 which would verify the other branches of the FA3 code
"""
model = DEFAULT_MODEL_NAME_FOR_TEST
accuracy_threshold = 0.65
speculative_decode = True
spec_decode_threshold = 1.6
@classmethod
def get_server_args(cls):
args = DEFAULT_SERVER_ARGS
args.extend(
[
"--cuda-graph-max-bs",
"4",
"--speculative-algorithm",
"EAGLE3",
"--speculative-draft-model-path",
DEFAULT_MODEL_NAME_FOR_TEST_EAGLE3,
"--speculative-num-steps",
"5",
"--speculative-eagle-topk",
"4",
"--speculative-num-draft-tokens",
"8",
"--dtype",
"float16",
]
)
return args
class TestFlashAttention3MLASpeculativeDecode(BaseFlashAttentionTest):
"""Test FlashAttention3 with speculative decode enabled with deepseek v3 test model and its nextN model"""
model = DEFAULT_MODEL_NAME_FOR_TEST_MLA
accuracy_threshold = 0.60
speculative_decode = True
spec_decode_threshold = 2.5
@classmethod
def get_server_args(cls):
args = DEFAULT_SERVER_ARGS
args.extend(
[
"--cuda-graph-max-bs",
"4",
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN,
"--speculative-num-steps",
"3",
"--speculative-eagle-topk",
"1",
"--speculative-num-draft-tokens",
"4",
]
)
return args
class TestFlashAttention3MLASpeculativeDecodeTopk(BaseFlashAttentionTest):
"""Test FlashAttention3 with speculative decode enabled with deepseek v3 test model and its nextN model
This test will be using top-k value > 1 which would verify the other branches of the FA3 code
"""
model = DEFAULT_MODEL_NAME_FOR_TEST_MLA
accuracy_threshold = 0.60
speculative_decode = True
spec_decode_threshold = 2.95
@classmethod
def get_server_args(cls):
args = DEFAULT_SERVER_ARGS
args.extend(
[
"--cuda-graph-max-bs",
"4",
"--speculative-algorithm",
"EAGLE",
"--speculative-draft-model-path",
DEFAULT_MODEL_NAME_FOR_TEST_MLA_NEXTN,
"--speculative-num-steps",
"5",
"--speculative-eagle-topk",
"4",
"--speculative-num-draft-tokens",
"8",
]
)
return args
if __name__ == "__main__":
unittest.main()