247 lines
8.1 KiB
Python
247 lines
8.1 KiB
Python
"""
|
|
python3 -m unittest test_skip_tokenizer_init.TestSkipTokenizerInit.test_parallel_sample
|
|
python3 -m unittest test_skip_tokenizer_init.TestSkipTokenizerInit.run_decode_stream
|
|
"""
|
|
|
|
import json
|
|
import unittest
|
|
from io import BytesIO
|
|
|
|
import requests
|
|
from PIL import Image
|
|
from transformers import AutoProcessor, AutoTokenizer
|
|
|
|
from sglang.lang.chat_template import get_chat_template_by_model_path
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_IMAGE_URL,
|
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
popen_launch_server,
|
|
)
|
|
|
|
|
|
class TestSkipTokenizerInit(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
cls.model,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=["--skip-tokenizer-init", "--stream-output"],
|
|
)
|
|
cls.eos_token_id = [119690]
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(
|
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST, use_fast=False
|
|
)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def run_decode(
|
|
self,
|
|
prompt_text="The capital of France is",
|
|
max_new_tokens=32,
|
|
return_logprob=False,
|
|
top_logprobs_num=0,
|
|
n=1,
|
|
):
|
|
input_ids = self.get_input_ids(prompt_text)
|
|
|
|
request = self.get_request_json(
|
|
input_ids=input_ids,
|
|
return_logprob=return_logprob,
|
|
top_logprobs_num=top_logprobs_num,
|
|
max_new_tokens=max_new_tokens,
|
|
stream=False,
|
|
n=n,
|
|
)
|
|
response = requests.post(
|
|
self.base_url + "/generate",
|
|
json=request,
|
|
)
|
|
ret = response.json()
|
|
print(json.dumps(ret, indent=2))
|
|
|
|
def assert_one_item(item):
|
|
if item["meta_info"]["finish_reason"]["type"] == "stop":
|
|
self.assertEqual(
|
|
item["meta_info"]["finish_reason"]["matched"],
|
|
self.tokenizer.eos_token_id,
|
|
)
|
|
elif item["meta_info"]["finish_reason"]["type"] == "length":
|
|
self.assertEqual(
|
|
len(item["output_ids"]), item["meta_info"]["completion_tokens"]
|
|
)
|
|
self.assertEqual(len(item["output_ids"]), max_new_tokens)
|
|
self.assertEqual(item["meta_info"]["prompt_tokens"], len(input_ids))
|
|
|
|
if return_logprob:
|
|
num_input_logprobs = len(input_ids) - request["logprob_start_len"]
|
|
if num_input_logprobs > len(input_ids):
|
|
num_input_logprobs -= len(input_ids)
|
|
self.assertEqual(
|
|
len(item["meta_info"]["input_token_logprobs"]),
|
|
num_input_logprobs,
|
|
f'{len(item["meta_info"]["input_token_logprobs"])} mismatch with {len(input_ids)}',
|
|
)
|
|
self.assertEqual(
|
|
len(item["meta_info"]["output_token_logprobs"]),
|
|
max_new_tokens,
|
|
)
|
|
|
|
# Determine whether to assert a single item or multiple items based on n
|
|
if n == 1:
|
|
assert_one_item(ret)
|
|
else:
|
|
self.assertEqual(len(ret), n)
|
|
for i in range(n):
|
|
assert_one_item(ret[i])
|
|
|
|
print("=" * 100)
|
|
|
|
def run_decode_stream(self, return_logprob=False, top_logprobs_num=0, n=1):
|
|
max_new_tokens = 32
|
|
input_ids = self.get_input_ids("The capital of France is")
|
|
requests.post(self.base_url + "/flush_cache")
|
|
response = requests.post(
|
|
self.base_url + "/generate",
|
|
json=self.get_request_json(
|
|
input_ids=input_ids,
|
|
max_new_tokens=max_new_tokens,
|
|
return_logprob=return_logprob,
|
|
top_logprobs_num=top_logprobs_num,
|
|
stream=False,
|
|
n=n,
|
|
),
|
|
)
|
|
ret = response.json()
|
|
print(json.dumps(ret))
|
|
output_ids = ret["output_ids"]
|
|
print("output from non-streaming request:")
|
|
print(output_ids)
|
|
print(self.tokenizer.decode(output_ids, skip_special_tokens=True))
|
|
|
|
requests.post(self.base_url + "/flush_cache")
|
|
response_stream = requests.post(
|
|
self.base_url + "/generate",
|
|
json=self.get_request_json(
|
|
input_ids=input_ids,
|
|
return_logprob=return_logprob,
|
|
top_logprobs_num=top_logprobs_num,
|
|
stream=True,
|
|
n=n,
|
|
),
|
|
)
|
|
|
|
response_stream_json = []
|
|
for line in response_stream.iter_lines():
|
|
print(line)
|
|
if line.startswith(b"data: ") and line[6:] != b"[DONE]":
|
|
response_stream_json.append(json.loads(line[6:]))
|
|
out_stream_ids = []
|
|
for x in response_stream_json:
|
|
out_stream_ids += x["output_ids"]
|
|
print("output from streaming request:")
|
|
print(out_stream_ids)
|
|
print(self.tokenizer.decode(out_stream_ids, skip_special_tokens=True))
|
|
|
|
assert output_ids == out_stream_ids
|
|
|
|
def test_simple_decode(self):
|
|
self.run_decode()
|
|
|
|
def test_parallel_sample(self):
|
|
self.run_decode(n=3)
|
|
|
|
def test_logprob(self):
|
|
for top_logprobs_num in [0, 3]:
|
|
self.run_decode(return_logprob=True, top_logprobs_num=top_logprobs_num)
|
|
|
|
def test_eos_behavior(self):
|
|
self.run_decode(max_new_tokens=256)
|
|
|
|
def test_simple_decode_stream(self):
|
|
self.run_decode_stream()
|
|
|
|
def get_input_ids(self, prompt_text) -> list[int]:
|
|
input_ids = self.tokenizer(prompt_text, return_tensors="pt")["input_ids"][
|
|
0
|
|
].tolist()
|
|
return input_ids
|
|
|
|
def get_request_json(
|
|
self,
|
|
input_ids,
|
|
max_new_tokens=32,
|
|
return_logprob=False,
|
|
top_logprobs_num=0,
|
|
stream=False,
|
|
n=1,
|
|
):
|
|
return {
|
|
"input_ids": input_ids,
|
|
"sampling_params": {
|
|
"temperature": 0 if n == 1 else 0.5,
|
|
"max_new_tokens": max_new_tokens,
|
|
"n": n,
|
|
"stop_token_ids": self.eos_token_id,
|
|
},
|
|
"stream": stream,
|
|
"return_logprob": return_logprob,
|
|
"top_logprobs_num": top_logprobs_num,
|
|
"logprob_start_len": 0,
|
|
}
|
|
|
|
|
|
class TestSkipTokenizerInitVLM(TestSkipTokenizerInit):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.image_url = DEFAULT_IMAGE_URL
|
|
response = requests.get(cls.image_url)
|
|
cls.image = Image.open(BytesIO(response.content))
|
|
cls.model = DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model, use_fast=False)
|
|
cls.processor = AutoProcessor.from_pretrained(cls.model, trust_remote_code=True)
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
cls.model,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=["--skip-tokenizer-init"],
|
|
)
|
|
cls.eos_token_id = [cls.tokenizer.eos_token_id]
|
|
|
|
def get_input_ids(self, _prompt_text) -> list[int]:
|
|
chat_template = get_chat_template_by_model_path(self.model)
|
|
text = f"{chat_template.image_token}What is in this picture?"
|
|
inputs = self.processor(
|
|
text=[text],
|
|
images=[self.image],
|
|
return_tensors="pt",
|
|
)
|
|
|
|
return inputs.input_ids[0].tolist()
|
|
|
|
def get_request_json(self, *args, **kwargs):
|
|
ret = super().get_request_json(*args, **kwargs)
|
|
ret["image_data"] = [self.image_url]
|
|
ret["logprob_start_len"] = (
|
|
-1
|
|
) # Do not try to calculate logprobs of image embeddings.
|
|
return ret
|
|
|
|
def test_simple_decode_stream(self):
|
|
# TODO mick
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|