125 lines
3.4 KiB
Python
125 lines
3.4 KiB
Python
import argparse
|
|
import json
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
from sglang.api import set_default_backend
|
|
from sglang.test.test_utils import (
|
|
add_common_sglang_args_and_parse,
|
|
select_sglang_backend,
|
|
)
|
|
from sglang.utils import read_jsonl
|
|
|
|
|
|
def get_example(lines, i, answer):
|
|
prompt = "Question: " + lines[i]["question"] + lines[i]["passage"] + "\nAnswer:"
|
|
if answer:
|
|
prompt += str(lines[i]["answer"])
|
|
return prompt
|
|
|
|
|
|
def few_shot_examples(lines, k):
|
|
prompts = ""
|
|
for i in range(k):
|
|
prompts += get_example(lines, i, True) + "\n\n"
|
|
return prompts
|
|
|
|
|
|
def main(args):
|
|
# Select backend
|
|
set_default_backend(select_sglang_backend(args))
|
|
|
|
# Read data
|
|
train_data_path = args.train_data_path
|
|
test_data_path = args.test_data_path
|
|
lines_train = list(read_jsonl(train_data_path))
|
|
lines_test = list(read_jsonl(test_data_path))
|
|
|
|
# Construct prompts
|
|
num_questions = args.num_questions
|
|
num_shots = args.num_shots
|
|
few_shots = few_shot_examples(lines_train, num_shots)
|
|
|
|
questions = []
|
|
answer = []
|
|
for i in range(len(lines_test[:num_questions])):
|
|
questions.append(get_example(lines_test, i, False))
|
|
answer.append(str(lines_test[i]["answer"]))
|
|
arguments = [{"question": q} for q in questions]
|
|
|
|
#####################################
|
|
######### SGL Program Begin #########
|
|
#####################################
|
|
|
|
import sglang as sgl
|
|
|
|
@sgl.function
|
|
def few_shot_boolq(s, question):
|
|
s += few_shots + question
|
|
s += sgl.gen("answer", max_tokens=5, stop=["\n"])
|
|
|
|
#####################################
|
|
########## SGL Program End ##########
|
|
#####################################
|
|
|
|
# Run requests
|
|
tic = time.perf_counter()
|
|
states = few_shot_boolq.run_batch(
|
|
arguments,
|
|
temperature=0,
|
|
num_threads=args.parallel,
|
|
progress_bar=True,
|
|
)
|
|
latency = time.perf_counter() - tic
|
|
|
|
preds = []
|
|
for i in range(len(states)):
|
|
preds.append(states[i]["answer"])
|
|
|
|
# Compute accuracy
|
|
acc = np.mean(np.array(preds) == np.array(answer))
|
|
|
|
# Compute speed
|
|
num_output_tokens = sum(
|
|
s.get_meta_info("answer")["completion_tokens"] for s in states
|
|
)
|
|
output_throughput = num_output_tokens / latency
|
|
|
|
# Print results
|
|
print(f"Accuracy: {acc:.3f}")
|
|
print(f"Latency: {latency:.3f} s")
|
|
print(f"Output throughput: {output_throughput:.3f} token/s")
|
|
|
|
# Results
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "boolq",
|
|
"backend": args.backend,
|
|
"num_gpus": 1,
|
|
"latency": round(latency, 3),
|
|
"accuracy": round(acc, 3),
|
|
"num_requests": args.num_questions,
|
|
"other": {
|
|
"num_questions": args.num_questions,
|
|
"parallel": args.parallel,
|
|
},
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--num-shots", type=int, default=5)
|
|
parser.add_argument(
|
|
"--train-data-path", type=str, default="./boolq/data/train-00000-of-00001.json"
|
|
)
|
|
parser.add_argument(
|
|
"--test-data-path",
|
|
type=str,
|
|
default="./boolq/data/validation-00000-of-00001.json",
|
|
)
|
|
parser.add_argument("--num-questions", type=int, default=200)
|
|
args = add_common_sglang_args_and_parse(parser)
|
|
main(args)
|