sglang_v0.5.2/sglang/benchmark/boolq/bench_sglang.py

125 lines
3.4 KiB
Python

import argparse
import json
import time
import numpy as np
from sglang.api import set_default_backend
from sglang.test.test_utils import (
add_common_sglang_args_and_parse,
select_sglang_backend,
)
from sglang.utils import read_jsonl
def get_example(lines, i, answer):
prompt = "Question: " + lines[i]["question"] + lines[i]["passage"] + "\nAnswer:"
if answer:
prompt += str(lines[i]["answer"])
return prompt
def few_shot_examples(lines, k):
prompts = ""
for i in range(k):
prompts += get_example(lines, i, True) + "\n\n"
return prompts
def main(args):
# Select backend
set_default_backend(select_sglang_backend(args))
# Read data
train_data_path = args.train_data_path
test_data_path = args.test_data_path
lines_train = list(read_jsonl(train_data_path))
lines_test = list(read_jsonl(test_data_path))
# Construct prompts
num_questions = args.num_questions
num_shots = args.num_shots
few_shots = few_shot_examples(lines_train, num_shots)
questions = []
answer = []
for i in range(len(lines_test[:num_questions])):
questions.append(get_example(lines_test, i, False))
answer.append(str(lines_test[i]["answer"]))
arguments = [{"question": q} for q in questions]
#####################################
######### SGL Program Begin #########
#####################################
import sglang as sgl
@sgl.function
def few_shot_boolq(s, question):
s += few_shots + question
s += sgl.gen("answer", max_tokens=5, stop=["\n"])
#####################################
########## SGL Program End ##########
#####################################
# Run requests
tic = time.perf_counter()
states = few_shot_boolq.run_batch(
arguments,
temperature=0,
num_threads=args.parallel,
progress_bar=True,
)
latency = time.perf_counter() - tic
preds = []
for i in range(len(states)):
preds.append(states[i]["answer"])
# Compute accuracy
acc = np.mean(np.array(preds) == np.array(answer))
# Compute speed
num_output_tokens = sum(
s.get_meta_info("answer")["completion_tokens"] for s in states
)
output_throughput = num_output_tokens / latency
# Print results
print(f"Accuracy: {acc:.3f}")
print(f"Latency: {latency:.3f} s")
print(f"Output throughput: {output_throughput:.3f} token/s")
# Results
with open(args.result_file, "a") as fout:
value = {
"task": "boolq",
"backend": args.backend,
"num_gpus": 1,
"latency": round(latency, 3),
"accuracy": round(acc, 3),
"num_requests": args.num_questions,
"other": {
"num_questions": args.num_questions,
"parallel": args.parallel,
},
}
fout.write(json.dumps(value) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num-shots", type=int, default=5)
parser.add_argument(
"--train-data-path", type=str, default="./boolq/data/train-00000-of-00001.json"
)
parser.add_argument(
"--test-data-path",
type=str,
default="./boolq/data/validation-00000-of-00001.json",
)
parser.add_argument("--num-questions", type=int, default=200)
args = add_common_sglang_args_and_parse(parser)
main(args)