sglang_v0.5.2/sglang/sgl-kernel/benchmark/bench_dsv3_router_gemm.py

128 lines
3.7 KiB
Python

import argparse
import torch
import torch.nn.functional as F
import triton
import triton.testing
from sgl_kernel import dsv3_router_gemm
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[i + 1 for i in range(16)],
x_log=False,
line_arg="impl",
line_vals=["torch-256", "sgl-kernel-256", "torch-384", "sgl-kernel-384"],
line_names=[
"torch-256",
"dsv3_router_gemm-256",
"torch-384",
"dsv3_router_gemm-384",
],
styles=[("blue", "-"), ("orange", "-"), ("green", "-"), ("red", "-")],
ylabel="TFLOPs",
plot_name="input-bf16-output-bf16 dsv3 router gemm throughput",
args={},
)
)
def benchmark_bf16_output(num_tokens, impl):
# M: num_tokens, K: hidden_dim, N: num_experts
M, K = num_tokens, 7168
if impl == "torch-256" or impl == "sgl-kernel-256":
N = 256
elif impl == "torch-384" or impl == "sgl-kernel-384":
N = 384
else:
raise ValueError(f"Unknown impl: {impl}")
mat_a = torch.randn((M, K), dtype=torch.bfloat16, device="cuda").contiguous()
mat_b = torch.randn((N, K), dtype=torch.bfloat16, device="cuda").contiguous()
quantiles = [0.5, 0.2, 0.8]
if impl == "torch-256" or impl == "torch-384":
def runner():
F.linear(mat_a, mat_b)
elif impl == "sgl-kernel-256" or impl == "sgl-kernel-384":
def runner():
dsv3_router_gemm(mat_a, mat_b, out_dtype=torch.bfloat16)
ms, min_ms, max_ms = triton.testing.do_bench(runner, quantiles=quantiles)
def tflops(t_ms):
flops = 2 * M * K * N
return flops / (t_ms * 1e-3) / 1e12
return tflops(ms), tflops(max_ms), tflops(min_ms)
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["num_tokens"],
x_vals=[i + 1 for i in range(16)],
x_log=False,
line_arg="impl",
line_vals=["torch-256", "sgl-kernel-256", "torch-384", "sgl-kernel-384"],
line_names=[
"torch-256",
"dsv3_router_gemm-256",
"torch-384",
"dsv3_router_gemm-384",
],
styles=[("blue", "-"), ("orange", "-"), ("green", "-"), ("red", "-")],
ylabel="TFLOPs",
plot_name="input-bf16-output-fp32 dsv3 router gemm throughput",
args={},
)
)
def benchmark_float_output(num_tokens, impl):
# M: num_tokens, K: hidden_dim, N: num_experts
M, K = num_tokens, 7168
if impl == "torch-256" or impl == "sgl-kernel-256":
N = 256
elif impl == "torch-384" or impl == "sgl-kernel-384":
N = 384
else:
raise ValueError(f"Unknown impl: {impl}")
mat_a = torch.randn((M, K), dtype=torch.bfloat16, device="cuda").contiguous()
mat_b = torch.randn((N, K), dtype=torch.bfloat16, device="cuda").contiguous()
quantiles = [0.5, 0.2, 0.8]
if impl == "torch-256" or impl == "torch-384":
def runner():
F.linear(mat_a, mat_b).to(torch.float32)
elif impl == "sgl-kernel-256" or impl == "sgl-kernel-384":
def runner():
dsv3_router_gemm(mat_a, mat_b, out_dtype=torch.float32)
ms, min_ms, max_ms = triton.testing.do_bench(runner, quantiles=quantiles)
def tflops(t_ms):
flops = 2 * M * K * N
return flops / (t_ms * 1e-3) / 1e12
return tflops(ms), tflops(max_ms), tflops(min_ms)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
args = parser.parse_args()
benchmark_bf16_output.run(
print_data=True, show_plots=True, save_path="bench_dsv3_router_gemm"
)
benchmark_float_output.run(
print_data=True, show_plots=True, save_path="bench_dsv3_router_gemm"
)