sglang_v0.5.2/sglang/sgl-kernel/python/sgl_kernel/gemm.py

551 lines
18 KiB
Python

from typing import Optional, Tuple
import torch
from sgl_kernel.scalar_type import ScalarType
from sgl_kernel.utils import _get_cache_buf, get_cuda_stream
def awq_dequantize(
qweight: torch.Tensor, scales: torch.Tensor, qzeros: torch.Tensor
) -> torch.ByteTensor:
return torch.ops.sgl_kernel.awq_dequantize.default(qweight, scales, qzeros)
def int8_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype, bias=None):
return torch.ops.sgl_kernel.int8_scaled_mm.default(
mat_a,
mat_b,
scales_a,
scales_b,
out_dtype,
bias,
)
def fp8_blockwise_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype):
return torch.ops.sgl_kernel.fp8_blockwise_scaled_mm.default(
mat_a,
mat_b,
scales_a,
scales_b,
out_dtype,
)
def fp8_scaled_mm(mat_a, mat_b, scales_a, scales_b, out_dtype, bias=None):
return torch.ops.sgl_kernel.fp8_scaled_mm.default(
mat_a,
mat_b,
scales_a,
scales_b,
out_dtype,
bias,
)
def _bmm_fp8_internal(
workspace_buffer: torch.Tensor,
A: torch.Tensor,
B: torch.Tensor,
D: torch.Tensor,
A_scale: torch.Tensor,
B_scale: torch.Tensor,
) -> None:
cublas_handle = torch.cuda.current_blas_handle()
torch.ops.sgl_kernel.bmm_fp8.default(
A,
B,
D,
A_scale,
B_scale,
workspace_buffer,
cublas_handle,
get_cuda_stream(),
)
def bmm_fp8(
A: torch.Tensor,
B: torch.Tensor,
A_scale: torch.Tensor,
B_scale: torch.Tensor,
dtype: torch.dtype,
out: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if out is None:
out = torch.empty(
(A.shape[0], A.shape[1], B.shape[2]),
device=A.device,
dtype=dtype,
)
workspace_buffer = _get_cache_buf("bmm_fp8_workspace", 32 * 1024 * 1024, A.device)
_bmm_fp8_internal(workspace_buffer, A, B, out, A_scale, B_scale)
return out
def dsv3_fused_a_gemm(
mat_a: torch.Tensor,
mat_b: torch.Tensor,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if output is None:
output = torch.empty(
(mat_a.shape[0], mat_b.shape[1]),
device=mat_a.device,
dtype=mat_a.dtype,
)
torch.ops.sgl_kernel.dsv3_fused_a_gemm.default(output, mat_a, mat_b)
return output
def sgl_per_token_group_quant_fp8(
input: torch.Tensor,
output_q: torch.Tensor,
output_s: torch.Tensor,
group_size: int,
eps: float,
fp8_min: float,
fp8_max: float,
scale_ue8m0: bool,
) -> None:
torch.ops.sgl_kernel.sgl_per_token_group_quant_fp8.default(
input, output_q, output_s, group_size, eps, fp8_min, fp8_max, scale_ue8m0
)
def sgl_per_token_group_quant_int8(
input: torch.Tensor,
output_q: torch.Tensor,
output_s: torch.Tensor,
group_size: int,
eps: float,
int8_min: float,
int8_max: float,
) -> None:
torch.ops.sgl_kernel.sgl_per_token_group_quant_int8.default(
input, output_q, output_s, group_size, eps, int8_min, int8_max
)
def sgl_per_tensor_quant_fp8(
input: torch.Tensor,
output_q: torch.Tensor,
output_s: torch.Tensor,
is_static: bool,
) -> None:
torch.ops.sgl_kernel.sgl_per_tensor_quant_fp8.default(
input, output_q, output_s, is_static
)
def sgl_per_token_quant_fp8(
input: torch.Tensor,
output_q: torch.Tensor,
output_s: torch.Tensor,
) -> None:
torch.ops.sgl_kernel.sgl_per_token_quant_fp8.default(input, output_q, output_s)
def cutlass_scaled_fp4_mm(
a: torch.Tensor,
b: torch.Tensor,
block_scale_a: torch.Tensor,
block_scale_b: torch.Tensor,
alpha: torch.Tensor,
out_dtype: torch.dtype,
) -> torch.Tensor:
assert a.ndim == 2 and b.ndim == 2
m, n = a.shape[0], b.shape[0]
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
torch.ops.sgl_kernel.cutlass_scaled_fp4_mm.default(
out, a, b, block_scale_a, block_scale_b, alpha
)
return out
def scaled_fp4_quant(
input: torch.Tensor, input_global_scale: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Quantize input tensor to FP4 and return quantized tensor and scale.
This function quantizes the last dimension of the given tensor `input`. For
every 16 consecutive elements, a single dynamically computed scaling factor
is shared. This scaling factor is quantized using the `input_global_scale`
and is stored in a swizzled layout (see
https://docs.nvidia.com/cuda/parallel-thread-execution/#tcgen05-mma-scale-factor-b-layout-4x).
Args:
input: The input tensor to be quantized to FP4
input_global_scale: A scalar scaling factor for the entire tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The output tensor in FP4 but every
two values are packed into a uint8 and float8_e4m3 scaling factors
in a sizzled layout.
"""
assert input.ndim >= 1, f"input.ndim needs to be >= 1, but got {input.ndim}."
other_dims = 1 if input.ndim == 1 else -1
input = input.reshape(other_dims, input.shape[-1])
m, n = input.shape
block_size = 16
device = input.device
assert n % block_size == 0, f"last dim has to be multiple of 16, but got {n}."
assert input.dtype in (
torch.float16,
torch.bfloat16,
), f"input.dtype needs to be fp16 or bf16 but got {input.dtype}."
# Two fp4 values will be packed into an uint8.
output = torch.empty((m, n // 2), device=device, dtype=torch.uint8)
# We use the rounded values to store the swizzled values. Then, the scaling
# factors in float8_e4m3fn are packed into an int32 for every 4 values.
rounded_m = ((m + 128 - 1) // 128) * 128
scale_n = n // block_size
rounded_n = ((scale_n + 4 - 1) // 4) * 4
# padded part should be zeroed out
if rounded_n > scale_n:
output_scale = torch.zeros(
(rounded_m, rounded_n // 4), device=device, dtype=torch.int32
)
else:
output_scale = torch.empty(
(rounded_m, rounded_n // 4), device=device, dtype=torch.int32
)
torch.ops.sgl_kernel.scaled_fp4_quant.default(
output, input, output_scale, input_global_scale
)
output_scale = output_scale.view(torch.float8_e4m3fn)
return output, output_scale
def qserve_w4a8_per_chn_gemm(
in_feats: torch.Tensor,
kernel: torch.Tensor,
wscales: torch.Tensor,
ascales: torch.Tensor,
w_szs: torch.Tensor,
a_ssums: torch.Tensor,
out_feats: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if out_feats is None:
# NOTE(HandH1998): qserve_w4a8_per_chn_gemm only supports out dtype=torch.float16 now
out_feats = torch.empty(
(in_feats.shape[0], kernel.shape[0]),
device=in_feats.device,
dtype=torch.float16,
)
torch.ops.sgl_kernel.qserve_w4a8_per_chn_gemm.default(
in_feats, kernel, wscales, ascales, w_szs, a_ssums, out_feats
)
return out_feats
def qserve_w4a8_per_group_gemm(
in_feats: torch.Tensor,
kernel: torch.Tensor,
zeros: torch.Tensor,
scales_i8: torch.Tensor,
wscales: torch.Tensor,
ascales: torch.Tensor,
out_feats: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if out_feats is None:
# NOTE(HandH1998): qserve_w4a8_per_group_gemm only supports out dtype=torch.float16 now
out_feats = torch.empty(
(in_feats.shape[0], kernel.shape[0]),
device=in_feats.device,
dtype=torch.float16,
)
torch.ops.sgl_kernel.qserve_w4a8_per_group_gemm.default(
in_feats, kernel, zeros, scales_i8, wscales, ascales, out_feats
)
return out_feats
def dsv3_router_gemm(
hidden_states: torch.Tensor,
router_weights: torch.Tensor,
out_dtype: torch.dtype = torch.bfloat16,
) -> torch.Tensor:
output = torch.empty(
hidden_states.shape[0],
router_weights.shape[0],
device=hidden_states.device,
dtype=out_dtype,
)
torch.ops.sgl_kernel.dsv3_router_gemm(
output,
hidden_states,
router_weights,
)
return output
def shuffle_rows(input_tensor, dst2src_map, output_tensor_shape):
output_tensor = torch.empty(
output_tensor_shape,
device=input_tensor.device,
dtype=input_tensor.dtype,
)
torch.ops.sgl_kernel.shuffle_rows.default(input_tensor, dst2src_map, output_tensor)
return output_tensor
def scaled_fp4_grouped_quant(
input_tensor: torch.Tensor,
input_global_scale: torch.Tensor,
mask: torch.Tensor,
):
"""
Quantize input tensor to FP4 and return quantized tensor and scale, for
grouped gemm inputs (e.g., grouped_gemm_nt_masked for flashinfer).
Args:
input: The input tensor to be quantized to FP4, with shape (l, m, k)
l is number of groups, m is number of tokens per group, k is number of features.
input_global_scale: A scalar scaling factor for the entire tensor, with
shape (l,).
Outputs:
output: The quantized tensor in FP4, with shape (m, k // 2, l) but the physical
layout is (l, m, k // 2). `// 2` is because two fp4 values are packed into
an uint8.
output_scales: The blockscale tensor in FP8-E4M3, with shape (32, 4, rm, 4, rk, l)
but the physical layout is (l, rm, rk, 32, 4, 4).
Note:
For the shape of output_scales, `32 * 4 * rm` is a padded m to nearest multiple of 128.
`4 * rk` is a padded `k // 16` to nearest multiple of 4. These layout constants are
required by the NVIDIA Blackwell MMA operations.
"""
device = input_tensor.device
l, m, k = input_tensor.shape
sf_vec_size = 16
assert k % sf_vec_size == 0, f"k must be multiple of 16, but got {k}."
scale_k = k // sf_vec_size
padded_k = (scale_k + (4 - 1)) // 4 * 4
padded_k_int32 = padded_k // 4
padded_m = (m + (128 - 1)) // 128 * 128
output = torch.empty(l, m, k // 2, device=device, dtype=torch.uint8)
output_scales = torch.empty(
l, padded_m, padded_k_int32, device=device, dtype=torch.int32
)
torch.ops.sgl_kernel.silu_and_mul_scaled_fp4_experts_quant.default(
output.view(l * m, k // 2),
output_scales.view(l * padded_m, padded_k_int32),
input_tensor.view(l * m, k),
input_global_scale,
mask,
use_silu_and_mul=False,
)
# The physical layout of the output is (l, m, k // 2), but we want to return a
# logical layout (m, k // 2, l) required by the flashinfer masked group gemm.
output = output.permute(1, 2, 0)
# The physical layout of the output scales is already swizzled as (l, rm, rk, 32, 4, 4), a
# requirement for the flashinfer masked group gemm, where rm=m/128 and rk=k/4. The logic
# layout is (32, 4, rm, 4, rk, l).
output_scales = output_scales.view(torch.float8_e4m3fn).view(
l, padded_m // 128, padded_k // 4, 32, 4, 4
)
output_scales = output_scales.permute(3, 4, 1, 5, 2, 0)
return output, output_scales
def silu_and_mul_scaled_fp4_grouped_quant(
input_tensor: torch.Tensor,
input_global_scale: torch.Tensor,
mask: torch.Tensor,
):
"""
Quantize input tensor to FP4 and return quantized tensor and scale, for
grouped gemm inputs (e.g., grouped_gemm_nt_masked for flashinfer).
Args:
input: The input tensor to be quantized to FP4, with shape (l, m, k * 2)
l is number of groups, m is number of tokens per group, k is number of features.
input_global_scale: A scalar scaling factor for the entire tensor, with
shape (l,).
mask: The mask tensor, with shape (l,)
Outputs:
output: The quantized tensor in FP4, with shape (m, k // 2, l) but the physical
layout is (l, m, k // 2). `// 2` is because two fp4 values are packed into
an uint8.
output_scales: The blockscale tensor in FP8-E4M3, with shape (32, 4, rm, 4, rk, l)
but the physical layout is (l, rm, rk, 32, 4, 4).
Note:
For the shape of output_scales, `32 * 4 * rm` is a padded m to nearest multiple of 128.
`4 * rk` is a padded `k // 16` to nearest multiple of 4. These layout constants are
required by the NVIDIA Blackwell MMA operations.
"""
device = input_tensor.device
l, m, k_by_2 = input_tensor.shape
k = k_by_2 // 2
sf_vec_size = 16
assert k % sf_vec_size == 0, f"k must be multiple of 16, but got {k}."
scale_k = k // sf_vec_size
padded_k = (scale_k + (4 - 1)) // 4 * 4
padded_k_int32 = padded_k // 4
padded_m = (m + (128 - 1)) // 128 * 128
output = torch.empty(l, m, k // 2, device=device, dtype=torch.uint8)
output_scales = torch.empty(
l, padded_m, padded_k_int32, device=device, dtype=torch.int32
)
torch.ops.sgl_kernel.silu_and_mul_scaled_fp4_experts_quant.default(
output.view(l * m, k // 2),
output_scales.view(l * padded_m, padded_k_int32),
input_tensor.view(l * m, k_by_2),
input_global_scale,
mask,
use_silu_and_mul=True,
)
# The physical layout of the output is (l, m, k // 2), but we want to return a
# logical layout (m, k // 2, l) required by the flashinfer masked group gemm.
output = output.permute(1, 2, 0)
# The physical layout of the output scales is already swizzled as (l, rm, rk, 32, 4, 4), a
# requirement for the flashinfer masked group gemm, where rm=m/128 and rk=k/4. The logic
# layout is (32, 4, rm, 4, rk, l).
output_scales = output_scales.view(torch.float8_e4m3fn).view(
l, padded_m // 128, padded_k // 4, 32, 4, 4
)
output_scales = output_scales.permute(3, 4, 1, 5, 2, 0)
return output, output_scales
def scaled_fp4_experts_quant(
input_tensor: torch.Tensor,
input_global_scale: torch.Tensor,
expert_offsets: torch.Tensor,
blockscale_offsets: torch.Tensor,
topk: int,
expert_map: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Quantize input tensor to FP4 and return quantized tensor and scale, for
packed MoE Inputs.
Args:
input: The input tensor to be quantized to FP4
expert_map: The expert map tensor
input_global_scale: A scalar scaling factor for the entire tensor.
expert_offsets: The expert offsets tensor
blockscale_offsets: The blockscale offsets tensor
Outputs:
output: The quantized tensor in FP4
output_scales: The blockscale tensor in FP8-E4M3
"""
assert (
input_tensor.ndim == 2
), f"input.ndim needs to be == 2, but got {input_tensor.ndim}."
if expert_map is not None:
(m, k) = input_tensor.shape
output_tensor_shape = (m * topk, k)
input_tensor = shuffle_rows(input_tensor, expert_map, output_tensor_shape)
m_numtopk, k = input_tensor.shape
# Control the maximum number of tokens per expert supported by the
# NVFP4 MoE Expert Quantization. This is used to prevent the kernel
# from running out of memory. This value can also be increased to support
# larger models.
import os
MAX_TOKENS_PER_EXPERT = os.environ.get("MODELOPT_MAX_TOKENS_PER_EXPERT", 65536)
assert m_numtopk <= MAX_TOKENS_PER_EXPERT * topk, (
f"m_numtopk must be less than MAX_TOKENS_PER_EXPERT("
f"{MAX_TOKENS_PER_EXPERT})"
f" for cutlass_moe_fp4, observed m_numtopk = {m_numtopk}. Use"
f" MODELOPT_MAX_TOKENS_PER_EXPERT to set this value."
)
scales_k = k // 16
padded_k = (scales_k + (4 - 1)) // 4
# output is uint8 and packed fp4 values
output = torch.empty(
m_numtopk, k // 2, device=input_tensor.device, dtype=torch.uint8
)
# padded part should be zeroed out
if padded_k > scales_k:
output_scales = torch.zeros(
MAX_TOKENS_PER_EXPERT * topk,
padded_k,
dtype=torch.int32,
device=input_tensor.device,
)
else:
output_scales = torch.empty(
MAX_TOKENS_PER_EXPERT * topk,
padded_k,
dtype=torch.int32,
device=input_tensor.device,
)
torch.ops.sgl_kernel.scaled_fp4_experts_quant.default(
output,
output_scales,
input_tensor,
input_global_scale,
expert_offsets,
blockscale_offsets,
)
output_scales = output_scales.view(torch.float8_e4m3fn)
return output, output_scales
# GPTQ kernels
def gptq_marlin_gemm(
a: torch.Tensor,
c: Optional[torch.Tensor],
b_q_weight: torch.Tensor,
b_scales: torch.Tensor,
global_scale: Optional[torch.Tensor],
b_zeros: Optional[torch.Tensor],
g_idx: Optional[torch.Tensor],
perm: Optional[torch.Tensor],
workspace: torch.Tensor,
b_q_type: ScalarType,
size_m: int,
size_n: int,
size_k: int,
is_k_full: bool = True,
use_atomic_add: bool = False,
use_fp32_reduce: bool = False,
is_zp_float: bool = False,
) -> torch.Tensor:
return torch.ops.sgl_kernel.gptq_marlin_gemm(
a,
c,
b_q_weight,
b_scales,
global_scale,
b_zeros,
g_idx,
perm,
workspace,
b_q_type.id,
size_m,
size_n,
size_k,
is_k_full,
use_atomic_add,
use_fp32_reduce,
is_zp_float,
)
def gptq_gemm(
a: torch.Tensor,
b_q_weight: torch.Tensor,
b_gptq_qzeros: torch.Tensor,
b_gptq_scales: torch.Tensor,
b_g_idx: torch.Tensor,
use_shuffle: bool,
bit: int,
) -> torch.Tensor:
return torch.ops.sgl_kernel.gptq_gemm(
a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx, use_shuffle, bit
)
def gptq_shuffle(q_weight: torch.Tensor, q_perm: torch.Tensor, bit: int) -> None:
torch.torch.ops.sgl_kernel.gptq_shuffle(q_weight, q_perm, bit)