sglang_v0.5.2/sglang/sgl-router/benches/request_processing.rs

693 lines
23 KiB
Rust

use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use serde_json::{from_str, to_string, to_value, to_vec};
use std::time::Instant;
use sglang_router_rs::core::{BasicWorker, Worker, WorkerType};
use sglang_router_rs::protocols::spec::{
ChatCompletionRequest, ChatMessage, CompletionRequest, GenerateParameters, GenerateRequest,
SamplingParams, StringOrArray, UserMessageContent,
};
use sglang_router_rs::routers::http::pd_types::{
generate_room_id, get_hostname, RequestWithBootstrap,
};
fn create_test_worker() -> BasicWorker {
BasicWorker::new(
"http://test-server:8000".to_string(),
WorkerType::Prefill {
bootstrap_port: Some(5678),
},
)
}
// Helper function to get bootstrap info from worker
fn get_bootstrap_info(worker: &BasicWorker) -> (String, Option<u16>) {
let hostname = get_hostname(worker.url());
let bootstrap_port = match worker.worker_type() {
WorkerType::Prefill { bootstrap_port } => bootstrap_port,
_ => None,
};
(hostname, bootstrap_port)
}
/// Create a default GenerateRequest for benchmarks with minimal fields set
fn default_generate_request() -> GenerateRequest {
GenerateRequest {
text: None,
prompt: None,
input_ids: None,
stream: false,
parameters: None,
sampling_params: None,
return_logprob: false,
// SGLang Extensions
lora_path: None,
session_params: None,
return_hidden_states: false,
rid: None,
}
}
/// Create a default ChatCompletionRequest for benchmarks with minimal fields set
fn default_chat_completion_request() -> ChatCompletionRequest {
ChatCompletionRequest {
model: String::new(),
messages: vec![],
max_tokens: None,
max_completion_tokens: None,
temperature: None,
top_p: None,
n: None,
stream: false,
stream_options: None,
stop: None,
presence_penalty: None,
frequency_penalty: None,
logit_bias: None,
logprobs: false,
top_logprobs: None,
user: None,
response_format: None,
seed: None,
tools: None,
tool_choice: None,
parallel_tool_calls: None,
function_call: None,
functions: None,
// SGLang Extensions
top_k: None,
min_p: None,
min_tokens: None,
repetition_penalty: None,
regex: None,
ebnf: None,
stop_token_ids: None,
no_stop_trim: false,
ignore_eos: false,
continue_final_message: false,
skip_special_tokens: true,
// SGLang Extensions
lora_path: None,
session_params: None,
separate_reasoning: true,
stream_reasoning: true,
chat_template_kwargs: None,
return_hidden_states: false,
}
}
/// Create a default CompletionRequest for benchmarks with minimal fields set
fn default_completion_request() -> CompletionRequest {
CompletionRequest {
model: String::new(),
prompt: StringOrArray::String(String::new()),
suffix: None,
max_tokens: None,
temperature: None,
top_p: None,
n: None,
stream: false,
stream_options: None,
logprobs: None,
echo: false,
stop: None,
presence_penalty: None,
frequency_penalty: None,
best_of: None,
logit_bias: None,
user: None,
seed: None,
// SGLang Extensions
top_k: None,
min_p: None,
min_tokens: None,
repetition_penalty: None,
regex: None,
ebnf: None,
json_schema: None,
stop_token_ids: None,
no_stop_trim: false,
ignore_eos: false,
skip_special_tokens: true,
// SGLang Extensions
lora_path: None,
session_params: None,
return_hidden_states: false,
other: serde_json::Map::new(),
}
}
// Sample request data for benchmarks
fn create_sample_generate_request() -> GenerateRequest {
GenerateRequest {
text: Some("Write a story about artificial intelligence".to_string()),
parameters: Some(GenerateParameters {
max_new_tokens: Some(100),
temperature: Some(0.8),
top_p: Some(0.9),
top_k: Some(50),
repetition_penalty: Some(1.0),
..Default::default()
}),
sampling_params: Some(SamplingParams {
temperature: Some(0.8),
top_p: Some(0.9),
top_k: Some(50),
frequency_penalty: Some(0.0),
presence_penalty: Some(0.0),
repetition_penalty: Some(1.0),
..Default::default()
}),
..default_generate_request()
}
}
fn create_sample_chat_completion_request() -> ChatCompletionRequest {
ChatCompletionRequest {
model: "gpt-3.5-turbo".to_string(),
messages: vec![
ChatMessage::System {
role: "system".to_string(),
content: "You are a helpful assistant".to_string(),
name: None,
},
ChatMessage::User {
role: "user".to_string(),
content: UserMessageContent::Text(
"Explain quantum computing in simple terms".to_string(),
),
name: None,
},
],
max_tokens: Some(150),
max_completion_tokens: Some(150),
temperature: Some(0.7),
top_p: Some(1.0),
n: Some(1),
presence_penalty: Some(0.0),
frequency_penalty: Some(0.0),
parallel_tool_calls: Some(true),
..default_chat_completion_request()
}
}
fn create_sample_completion_request() -> CompletionRequest {
CompletionRequest {
model: "text-davinci-003".to_string(),
prompt: StringOrArray::String("Complete this sentence: The future of AI is".to_string()),
max_tokens: Some(50),
temperature: Some(0.8),
top_p: Some(1.0),
n: Some(1),
presence_penalty: Some(0.0),
frequency_penalty: Some(0.0),
best_of: Some(1),
..default_completion_request()
}
}
fn create_large_chat_completion_request() -> ChatCompletionRequest {
let mut messages = vec![ChatMessage::System {
role: "system".to_string(),
content: "You are a helpful assistant with extensive knowledge.".to_string(),
name: None,
}];
// Add many user/assistant pairs to simulate a long conversation
for i in 0..50 {
messages.push(ChatMessage::User {
role: "user".to_string(),
content: UserMessageContent::Text(format!("Question {}: What do you think about topic number {} which involves complex reasoning about multiple interconnected systems and their relationships?", i, i)),
name: None,
});
messages.push(ChatMessage::Assistant {
role: "assistant".to_string(),
content: Some(format!("Answer {}: This is a detailed response about topic {} that covers multiple aspects and provides comprehensive analysis of the interconnected systems you mentioned.", i, i)),
name: None,
tool_calls: None,
function_call: None,
reasoning_content: None,
});
}
ChatCompletionRequest {
model: "gpt-4".to_string(),
messages,
max_tokens: Some(1000),
max_completion_tokens: Some(1000),
temperature: Some(0.7),
top_p: Some(0.95),
n: Some(1),
presence_penalty: Some(0.1),
frequency_penalty: Some(0.1),
top_logprobs: Some(5),
user: Some("benchmark_user".to_string()),
seed: Some(42),
parallel_tool_calls: Some(true),
..default_chat_completion_request()
}
}
// Benchmark JSON serialization
fn bench_json_serialization(c: &mut Criterion) {
let mut group = c.benchmark_group("json_serialization");
let generate_req = create_sample_generate_request();
let chat_req = create_sample_chat_completion_request();
let completion_req = create_sample_completion_request();
let large_chat_req = create_large_chat_completion_request();
group.bench_function("generate_request", |b| {
b.iter(|| {
let json = to_string(black_box(&generate_req)).unwrap();
black_box(json);
});
});
group.bench_function("chat_completion_request", |b| {
b.iter(|| {
let json = to_string(black_box(&chat_req)).unwrap();
black_box(json);
});
});
group.bench_function("completion_request", |b| {
b.iter(|| {
let json = to_string(black_box(&completion_req)).unwrap();
black_box(json);
});
});
group.bench_function("large_chat_completion_request", |b| {
b.iter(|| {
let json = to_string(black_box(&large_chat_req)).unwrap();
black_box(json);
});
});
group.bench_function("generate_request_to_bytes", |b| {
b.iter(|| {
let bytes = to_vec(black_box(&generate_req)).unwrap();
black_box(bytes);
});
});
group.finish();
}
// Benchmark JSON deserialization
fn bench_json_deserialization(c: &mut Criterion) {
let mut group = c.benchmark_group("json_deserialization");
let generate_json = to_string(&create_sample_generate_request()).unwrap();
let chat_json = to_string(&create_sample_chat_completion_request()).unwrap();
let completion_json = to_string(&create_sample_completion_request()).unwrap();
let large_chat_json = to_string(&create_large_chat_completion_request()).unwrap();
group.bench_function("generate_request", |b| {
b.iter(|| {
let req: GenerateRequest = from_str(black_box(&generate_json)).unwrap();
black_box(req);
});
});
group.bench_function("chat_completion_request", |b| {
b.iter(|| {
let req: ChatCompletionRequest = from_str(black_box(&chat_json)).unwrap();
black_box(req);
});
});
group.bench_function("completion_request", |b| {
b.iter(|| {
let req: CompletionRequest = from_str(black_box(&completion_json)).unwrap();
black_box(req);
});
});
group.bench_function("large_chat_completion_request", |b| {
b.iter(|| {
let req: ChatCompletionRequest = from_str(black_box(&large_chat_json)).unwrap();
black_box(req);
});
});
group.finish();
}
// Benchmark bootstrap injection (replaces request adaptation)
fn bench_bootstrap_injection(c: &mut Criterion) {
let mut group = c.benchmark_group("bootstrap_injection");
let generate_req = create_sample_generate_request();
let chat_req = create_sample_chat_completion_request();
let completion_req = create_sample_completion_request();
let large_chat_req = create_large_chat_completion_request();
let worker = create_test_worker();
let (hostname, bootstrap_port) = get_bootstrap_info(&worker);
group.bench_function("generate_bootstrap_injection", |b| {
b.iter(|| {
let request_with_bootstrap = RequestWithBootstrap {
original: &generate_req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
let json = to_value(black_box(&request_with_bootstrap)).unwrap();
black_box(json);
});
});
group.bench_function("chat_completion_bootstrap_injection", |b| {
b.iter(|| {
let request_with_bootstrap = RequestWithBootstrap {
original: &chat_req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
let json = to_value(black_box(&request_with_bootstrap)).unwrap();
black_box(json);
});
});
group.bench_function("completion_bootstrap_injection", |b| {
b.iter(|| {
let request_with_bootstrap = RequestWithBootstrap {
original: &completion_req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
let json = to_value(black_box(&request_with_bootstrap)).unwrap();
black_box(json);
});
});
group.bench_function("large_chat_completion_bootstrap_injection", |b| {
b.iter(|| {
let request_with_bootstrap = RequestWithBootstrap {
original: &large_chat_req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
let json = to_value(black_box(&request_with_bootstrap)).unwrap();
black_box(json);
});
});
group.finish();
}
// Benchmark direct JSON routing (replaces regular routing)
fn bench_direct_json_routing(c: &mut Criterion) {
let mut group = c.benchmark_group("direct_json_routing");
let generate_req = create_sample_generate_request();
let chat_req = create_sample_chat_completion_request();
let completion_req = create_sample_completion_request();
group.bench_function("generate_to_json", |b| {
b.iter(|| {
let json = to_value(black_box(&generate_req)).unwrap();
black_box(json);
});
});
group.bench_function("generate_to_json_string", |b| {
b.iter(|| {
let json = to_string(black_box(&generate_req)).unwrap();
black_box(json);
});
});
group.bench_function("generate_to_bytes", |b| {
b.iter(|| {
let bytes = to_vec(black_box(&generate_req)).unwrap();
black_box(bytes);
});
});
group.bench_function("chat_completion_to_json", |b| {
b.iter(|| {
let json = to_value(black_box(&chat_req)).unwrap();
black_box(json);
});
});
group.bench_function("chat_completion_to_json_string", |b| {
b.iter(|| {
let json = to_string(black_box(&chat_req)).unwrap();
black_box(json);
});
});
group.bench_function("completion_to_json", |b| {
b.iter(|| {
let json = to_value(black_box(&completion_req)).unwrap();
black_box(json);
});
});
group.finish();
}
// Benchmark throughput with different request sizes
fn bench_throughput_by_size(c: &mut Criterion) {
let mut group = c.benchmark_group("throughput_by_size");
// Create requests of different sizes
let small_generate = GenerateRequest {
text: Some("Hi".to_string()),
..default_generate_request()
};
let medium_generate = GenerateRequest {
text: Some("Write a medium length story about AI".repeat(10)),
..default_generate_request()
};
let large_generate = GenerateRequest {
text: Some("Write a very long and detailed story about artificial intelligence and its impact on society".repeat(100)),
..default_generate_request()
};
let worker = create_test_worker();
let (hostname, bootstrap_port) = get_bootstrap_info(&worker);
for (name, req) in [
("small", &small_generate),
("medium", &medium_generate),
("large", &large_generate),
] {
let json = to_string(req).unwrap();
let size_bytes = json.len();
let hostname_clone = hostname.clone();
group.throughput(Throughput::Bytes(size_bytes as u64));
group.bench_with_input(BenchmarkId::new("serialize", name), &req, |b, req| {
b.iter(|| {
let json = to_string(black_box(req)).unwrap();
black_box(json);
});
});
group.bench_with_input(
BenchmarkId::new("deserialize", name),
&json,
|b, json_str| {
b.iter(|| {
let req: GenerateRequest = black_box(from_str(json_str)).unwrap();
black_box(req);
});
},
);
group.bench_with_input(
BenchmarkId::new("bootstrap_inject", name),
&req,
move |b, req| {
let hostname = hostname_clone.clone();
b.iter(|| {
let request_with_bootstrap = RequestWithBootstrap {
original: req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
let json = to_value(&request_with_bootstrap).unwrap();
black_box(json);
});
},
);
}
group.finish();
}
// Benchmark full round-trip: deserialize -> inject bootstrap -> serialize
fn bench_full_round_trip(c: &mut Criterion) {
let mut group = c.benchmark_group("full_round_trip");
let generate_json = to_string(&create_sample_generate_request()).unwrap();
let chat_json = to_string(&create_sample_chat_completion_request()).unwrap();
let completion_json = to_string(&create_sample_completion_request()).unwrap();
let worker = create_test_worker();
let (hostname, bootstrap_port) = get_bootstrap_info(&worker);
group.bench_function("generate_openai_to_pd_pipeline", |b| {
b.iter(|| {
// Deserialize OpenAI request
let req: GenerateRequest = from_str(black_box(&generate_json)).unwrap();
// Create wrapper with bootstrap fields
let request_with_bootstrap = RequestWithBootstrap {
original: &req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
// Serialize final request
let pd_json = to_string(&request_with_bootstrap).unwrap();
black_box(pd_json);
});
});
group.bench_function("chat_completion_openai_to_pd_pipeline", |b| {
b.iter(|| {
let req: ChatCompletionRequest = from_str(black_box(&chat_json)).unwrap();
let request_with_bootstrap = RequestWithBootstrap {
original: &req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
let pd_json = to_string(&request_with_bootstrap).unwrap();
black_box(pd_json);
});
});
group.bench_function("completion_openai_to_pd_pipeline", |b| {
b.iter(|| {
let req: CompletionRequest = from_str(black_box(&completion_json)).unwrap();
let request_with_bootstrap = RequestWithBootstrap {
original: &req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
let pd_json = to_string(&request_with_bootstrap).unwrap();
black_box(pd_json);
});
});
group.bench_function("generate_direct_json_pipeline", |b| {
b.iter(|| {
// Deserialize OpenAI request
let req: GenerateRequest = from_str(black_box(&generate_json)).unwrap();
// Convert to JSON for direct routing (no bootstrap injection)
let routing_json = to_value(&req).unwrap();
let json_string = to_string(&routing_json).unwrap();
black_box(json_string);
});
});
group.finish();
}
fn benchmark_summary(c: &mut Criterion) {
let group = c.benchmark_group("benchmark_summary");
println!("\nSGLang Router Performance Benchmark Suite");
println!("=============================================");
// Quick performance overview
let generate_req = create_sample_generate_request();
let worker = create_test_worker();
println!("\nQuick Performance Overview:");
// Measure serialization
let start = Instant::now();
for _ in 0..1000 {
let _ = black_box(to_string(&generate_req).unwrap());
}
let serialize_time = start.elapsed().as_nanos() / 1000;
println!(" * Serialization (avg): {:>8} ns/req", serialize_time);
// Measure deserialization
let json = to_string(&generate_req).unwrap();
let start = Instant::now();
for _ in 0..1000 {
let _: GenerateRequest = black_box(from_str(&json).unwrap());
}
let deserialize_time = start.elapsed().as_nanos() / 1000;
println!(
" * Deserialization (avg): {:>8} ns/req",
deserialize_time
);
// Measure bootstrap injection (replaces adaptation)
let (hostname, bootstrap_port) = get_bootstrap_info(&worker);
let start = Instant::now();
for _ in 0..1000 {
let request_with_bootstrap = RequestWithBootstrap {
original: &generate_req,
bootstrap_host: hostname.clone(),
bootstrap_port,
bootstrap_room: generate_room_id(),
};
let _ = black_box(to_value(&request_with_bootstrap).unwrap());
}
let inject_time = start.elapsed().as_nanos() / 1000;
println!(" * Bootstrap Injection (avg): {:>6} ns/req", inject_time);
// Calculate ratios
let total_pipeline = serialize_time + deserialize_time + inject_time;
println!(" * Total Pipeline (avg): {:>8} ns/req", total_pipeline);
println!("\nPerformance Insights:");
if deserialize_time > serialize_time * 2 {
println!(" • Deserialization is significantly faster than serialization");
}
if inject_time < serialize_time / 10 {
println!(
" • Bootstrap injection overhead is negligible ({:.1}% of serialization)",
(inject_time as f64 / serialize_time as f64) * 100.0
);
}
if total_pipeline < 100_000 {
println!(" • Total pipeline latency is excellent (< 100μs)");
}
println!("\nSimplification Benefits:");
println!(" • Eliminated complex type conversion layer");
println!(" • Reduced memory allocations");
println!(" • Automatic field preservation (no manual mapping)");
println!(" • Direct JSON manipulation improves performance");
println!("\nRecommendations:");
if serialize_time > deserialize_time {
println!(" • Focus optimization efforts on serialization rather than deserialization");
}
println!(" • PD mode overhead is minimal - safe to use for latency-sensitive workloads");
println!(" • Consider batching small requests to improve overall throughput");
println!("\n{}", "=".repeat(50));
group.finish();
}
criterion_group!(
benches,
benchmark_summary,
bench_json_serialization,
bench_json_deserialization,
bench_bootstrap_injection,
bench_direct_json_routing,
bench_throughput_by_size,
bench_full_round_trip
);
criterion_main!(benches);