sglang_v0.5.2/sglang/sgl-router/benches/tool_parser_benchmark.rs

849 lines
39 KiB
Rust

//! Comprehensive tool parser benchmark for measuring performance under various scenarios
//!
//! This benchmark tests:
//! - Single parser parsing performance
//! - Registry creation overhead
//! - Concurrent parsing with shared parsers
//! - Streaming vs complete parsing
//! - Different model formats (JSON, Mistral, Qwen, Pythonic, etc.)
use criterion::{black_box, criterion_group, BenchmarkId, Criterion, Throughput};
use sglang_router_rs::tool_parser::{
registry::ParserRegistry, state::ParseState, types::StreamResult,
};
use std::collections::BTreeMap;
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::{Duration, Instant};
use tokio::runtime::Runtime;
// Test data for different parser formats - realistic complex examples
const JSON_SIMPLE: &str = r#"{"name": "code_interpreter", "arguments": "{\"language\": \"python\", \"code\": \"import numpy as np\\nimport matplotlib.pyplot as plt\\n\\n# Generate sample data\\nx = np.linspace(0, 10, 100)\\ny = np.sin(x) * np.exp(-x/10)\\n\\n# Create the plot\\nplt.figure(figsize=(10, 6))\\nplt.plot(x, y, 'b-', linewidth=2)\\nplt.grid(True)\\nplt.xlabel('Time (s)')\\nplt.ylabel('Amplitude')\\nplt.title('Damped Oscillation')\\nplt.show()\"}"}"#;
const JSON_ARRAY: &str = r#"[{"name": "web_search", "arguments": "{\"query\": \"latest developments in quantum computing 2024\", \"num_results\": 10, \"search_type\": \"news\", \"date_range\": \"2024-01-01:2024-12-31\", \"exclude_domains\": [\"reddit.com\", \"facebook.com\"], \"language\": \"en\"}"}, {"name": "analyze_sentiment", "arguments": "{\"text\": \"The breakthrough in quantum error correction represents a significant milestone. Researchers are optimistic about practical applications within the next decade.\", \"granularity\": \"sentence\", \"aspects\": [\"technology\", \"timeline\", \"impact\"], \"confidence_threshold\": 0.85}"}, {"name": "create_summary", "arguments": "{\"content_ids\": [\"doc_1234\", \"doc_5678\", \"doc_9012\"], \"max_length\": 500, \"style\": \"technical\", \"include_citations\": true}"}]"#;
const JSON_WITH_PARAMS: &str = r#"{"name": "database_query", "parameters": {"connection_string": "postgresql://user:pass@localhost:5432/analytics", "query": "SELECT customer_id, COUNT(*) as order_count, SUM(total_amount) as lifetime_value, AVG(order_amount) as avg_order_value FROM orders WHERE created_at >= '2024-01-01' GROUP BY customer_id HAVING COUNT(*) > 5 ORDER BY lifetime_value DESC LIMIT 100", "timeout_ms": 30000, "read_consistency": "strong", "partition_key": "customer_id"}}"#;
const MISTRAL_FORMAT: &str = r#"I'll help you analyze the sales data and create visualizations. Let me start by querying the database and then create some charts.
[TOOL_CALLS] [{"name": "sql_query", "arguments": {"database": "sales_analytics", "query": "WITH monthly_sales AS (SELECT DATE_TRUNC('month', order_date) as month, SUM(total_amount) as revenue, COUNT(DISTINCT customer_id) as unique_customers, COUNT(*) as total_orders FROM orders WHERE order_date >= CURRENT_DATE - INTERVAL '12 months' GROUP BY DATE_TRUNC('month', order_date)) SELECT month, revenue, unique_customers, total_orders, LAG(revenue) OVER (ORDER BY month) as prev_month_revenue, (revenue - LAG(revenue) OVER (ORDER BY month)) / LAG(revenue) OVER (ORDER BY month) * 100 as growth_rate FROM monthly_sales ORDER BY month DESC", "format": "json", "timeout": 60000}}]
Based on the query results, I can see interesting trends in your sales data."#;
const MISTRAL_MULTI: &str = r#"Let me help you with a comprehensive analysis of your application's performance.
[TOOL_CALLS] [{"name": "get_metrics", "arguments": {"service": "api-gateway", "metrics": ["latency_p50", "latency_p95", "latency_p99", "error_rate", "requests_per_second"], "start_time": "2024-01-01T00:00:00Z", "end_time": "2024-01-01T23:59:59Z", "aggregation": "5m", "filters": {"environment": "production", "region": "us-east-1"}}}, {"name": "analyze_logs", "arguments": {"log_group": "/aws/lambda/process-orders", "query": "fields @timestamp, @message, @requestId, duration | filter @message like /ERROR/ | stats count() by bin(@timestamp, 5m) as time_window", "start_time": "2024-01-01T00:00:00Z", "end_time": "2024-01-01T23:59:59Z", "limit": 1000}}, {"name": "get_traces", "arguments": {"service": "order-processing", "operation": "ProcessOrder", "min_duration_ms": 1000, "max_results": 100, "include_downstream": true}}]
Now let me create a comprehensive report based on this data."#;
const QWEN_FORMAT: &str = r#"Let me search for information about machine learning frameworks and their performance benchmarks.
<tool_call>
{"name": "academic_search", "arguments": {"query": "transformer architecture optimization techniques GPU inference latency reduction", "databases": ["arxiv", "ieee", "acm"], "year_range": [2020, 2024], "citation_count_min": 10, "include_code": true, "page_size": 25, "sort_by": "relevance"}}
</tool_call>
I found several interesting papers on optimization techniques."#;
const QWEN_MULTI: &str = r#"I'll help you set up a complete data pipeline for your analytics system.
<tool_call>
{"name": "create_data_pipeline", "arguments": {"name": "customer_analytics_etl", "source": {"type": "kafka", "config": {"bootstrap_servers": "kafka1:9092,kafka2:9092", "topic": "customer_events", "consumer_group": "analytics_consumer", "auto_offset_reset": "earliest"}}, "transformations": [{"type": "filter", "condition": "event_type IN ('purchase', 'signup', 'churn')"}, {"type": "aggregate", "window": "1h", "group_by": ["customer_id", "event_type"], "metrics": ["count", "sum(amount)"]}], "destination": {"type": "bigquery", "dataset": "analytics", "table": "customer_metrics", "write_mode": "append"}}}
</tool_call>
<tool_call>
{"name": "schedule_job", "arguments": {"job_id": "customer_analytics_etl", "schedule": "0 */4 * * *", "timezone": "UTC", "retry_policy": {"max_attempts": 3, "backoff_multiplier": 2, "max_backoff": 3600}, "notifications": {"on_failure": ["ops-team@company.com"], "on_success": null}, "monitoring": {"sla_minutes": 30, "alert_threshold": 0.95}}}
</tool_call>
<tool_call>
{"name": "create_dashboard", "arguments": {"title": "Customer Analytics Dashboard", "widgets": [{"type": "time_series", "title": "Customer Acquisition", "query": "SELECT DATE(timestamp) as date, COUNT(DISTINCT customer_id) as new_customers FROM analytics.customer_metrics WHERE event_type = 'signup' GROUP BY date ORDER BY date", "visualization": "line"}, {"type": "metric", "title": "Total Revenue", "query": "SELECT SUM(amount) as total FROM analytics.customer_metrics WHERE event_type = 'purchase' AND DATE(timestamp) = CURRENT_DATE()", "format": "currency"}, {"type": "table", "title": "Top Customers", "query": "SELECT customer_id, COUNT(*) as purchases, SUM(amount) as total_spent FROM analytics.customer_metrics WHERE event_type = 'purchase' GROUP BY customer_id ORDER BY total_spent DESC LIMIT 10"}], "refresh_interval": 300}}
</tool_call>
The data pipeline has been configured and the dashboard is ready."#;
const LLAMA_FORMAT: &str = r#"<|python_tag|>{"name": "execute_code", "arguments": "{\"code\": \"import pandas as pd\\nimport numpy as np\\nfrom sklearn.model_selection import train_test_split\\nfrom sklearn.ensemble import RandomForestClassifier\\nfrom sklearn.metrics import classification_report, confusion_matrix\\nimport joblib\\n\\n# Load and preprocess data\\ndf = pd.read_csv('/data/customer_churn.csv')\\nprint(f'Dataset shape: {df.shape}')\\nprint(f'Missing values: {df.isnull().sum().sum()}')\\n\\n# Feature engineering\\ndf['tenure_months'] = pd.to_datetime('today') - pd.to_datetime(df['signup_date'])\\ndf['tenure_months'] = df['tenure_months'].dt.days // 30\\ndf['avg_monthly_spend'] = df['total_spend'] / df['tenure_months'].clip(lower=1)\\n\\n# Prepare features and target\\nfeature_cols = ['tenure_months', 'avg_monthly_spend', 'support_tickets', 'product_usage_hours', 'feature_adoption_score']\\nX = df[feature_cols]\\ny = df['churned']\\n\\n# Split and train\\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)\\nrf_model = RandomForestClassifier(n_estimators=100, max_depth=10, min_samples_split=5, random_state=42)\\nrf_model.fit(X_train, y_train)\\n\\n# Evaluate\\ny_pred = rf_model.predict(X_test)\\nprint('Classification Report:')\\nprint(classification_report(y_test, y_pred))\\n\\n# Save model\\njoblib.dump(rf_model, '/models/churn_predictor_v1.pkl')\\nprint('Model saved successfully!')\"}"}"#;
const PYTHONIC_FORMAT: &str = r#"[retrieve_context(query="How do transformer models handle long-range dependencies in natural language processing tasks?", index="ml_knowledge_base", top_k=5, similarity_threshold=0.75, rerank=True, include_metadata=True, filters={"category": "deep_learning", "year": {"$gte": 2020}})]"#;
const PYTHONIC_MULTI: &str = r#"[fetch_api_data(endpoint="https://api.weather.com/v1/forecast", params={"lat": 37.7749, "lon": -122.4194, "units": "metric", "days": 7, "hourly": True}, headers={"API-Key": "${WEATHER_API_KEY}"}, timeout=30, retry_count=3), process_weather_data(data="${response}", extract_fields=["temperature", "humidity", "precipitation", "wind_speed", "uv_index"], aggregation="daily", calculate_trends=True), generate_report(data="${processed_data}", template="weather_forecast", format="html", include_charts=True, language="en")]"#;
const DEEPSEEK_FORMAT: &str = r#"I'll analyze your codebase and identify potential security vulnerabilities.
🤔[{"name": "scan_repository", "arguments": {"repo_path": "/src/application", "scan_types": ["security", "dependencies", "secrets", "code_quality"], "file_patterns": ["*.py", "*.js", "*.java", "*.go"], "exclude_dirs": ["node_modules", ".git", "vendor", "build"], "vulnerability_databases": ["cve", "nvd", "ghsa"], "min_severity": "medium", "check_dependencies": true, "deep_scan": true, "parallel_workers": 8}}]
Let me examine the scan results and provide recommendations."#;
const KIMIK2_FORMAT: &str = r#"⍼validate_and_deploy⍁{"deployment_config": {"application": "payment-service", "version": "2.3.1", "environment": "staging", "region": "us-west-2", "deployment_strategy": "blue_green", "health_check": {"endpoint": "/health", "interval": 30, "timeout": 5, "healthy_threshold": 2, "unhealthy_threshold": 3}, "rollback_on_failure": true, "canary_config": {"percentage": 10, "duration_minutes": 30, "metrics": ["error_rate", "latency_p99", "success_rate"], "thresholds": {"error_rate": 0.01, "latency_p99": 500, "success_rate": 0.99}}, "pre_deployment_hooks": ["run_tests", "security_scan", "backup_database"], "post_deployment_hooks": ["smoke_tests", "notify_team", "update_documentation"]}}"#;
const GLM4_FORMAT: &str = r#"<tool>
analyze_customer_behavior
<parameter>dataset_id=customer_interactions_2024</parameter>
<parameter>analysis_type=cohort_retention</parameter>
<parameter>cohort_definition=signup_month</parameter>
<parameter>retention_periods=[1, 7, 14, 30, 60, 90, 180, 365]</parameter>
<parameter>segment_by=["acquisition_channel", "pricing_tier", "industry", "company_size"]</parameter>
<parameter>metrics=["active_users", "revenue", "feature_usage", "engagement_score"]</parameter>
<parameter>statistical_tests=["chi_square", "anova", "trend_analysis"]</parameter>
<parameter>visualization_types=["heatmap", "line_chart", "funnel", "sankey"]</parameter>
<parameter>export_format=dashboard</parameter>
<parameter>confidence_level=0.95</parameter>
</tool>"#;
const STEP3_FORMAT: &str = r#"<step.tML version="0.1">
<call>
<name>orchestrate_ml_pipeline</name>
<parameters>
<parameter name="pipeline_name">fraud_detection_model_v3</parameter>
<parameter name="data_source">s3://ml-datasets/transactions/2024/</parameter>
<parameter name="preprocessing_steps">
<step order="1" type="clean">{"remove_duplicates": true, "handle_missing": "interpolate", "outlier_method": "isolation_forest"}</step>
<step order="2" type="feature_engineering">{"create_ratios": true, "time_features": ["hour", "day_of_week", "month"], "aggregations": ["mean", "std", "max"]}</step>
<step order="3" type="normalize">{"method": "robust_scaler", "clip_outliers": true}</step>
</parameter>
<parameter name="model_config">{"algorithm": "xgboost", "hyperparameters": {"n_estimators": 500, "max_depth": 8, "learning_rate": 0.01, "subsample": 0.8}, "cross_validation": {"method": "stratified_kfold", "n_splits": 5}}</parameter>
<parameter name="evaluation_metrics">["auc_roc", "precision_recall", "f1", "confusion_matrix"]</parameter>
<parameter name="deployment_target">sagemaker_endpoint</parameter>
<parameter name="monitoring_config">{"drift_detection": true, "performance_threshold": 0.92, "alert_emails": ["ml-team@company.com"]}</parameter>
</parameters>
</call>
</step.tML>"#;
const GPT_OSS_FORMAT: &str = r#"<Channel.vector_search>{"collection": "technical_documentation", "query_embedding": [0.0234, -0.1456, 0.0891, 0.2341, -0.0567, 0.1234, 0.0456, -0.0789, 0.1567, 0.0234, -0.1123, 0.0678, 0.2345, -0.0456, 0.0891, 0.1234, -0.0567, 0.0789, 0.1456, -0.0234, 0.0891, 0.1567, -0.0678, 0.0345, 0.1234, -0.0456, 0.0789, 0.1891, -0.0234, 0.0567, 0.1345, -0.0891], "top_k": 10, "similarity_metric": "cosine", "filters": {"language": "en", "last_updated": {"$gte": "2023-01-01"}, "categories": {"$in": ["api", "sdk", "integration"]}}, "include_metadata": true, "rerank_with_cross_encoder": true}</Channel.vector_search>"#;
// Large test data for stress testing
fn generate_large_json(num_tools: usize) -> String {
let mut tools = Vec::new();
for i in 0..num_tools {
tools.push(format!(
r#"{{"name": "tool_{}", "arguments": {{"param1": "value{}", "param2": {}, "param3": true}}}}"#,
i, i, i
));
}
format!("[{}]", tools.join(", "))
}
// Global results storage
lazy_static::lazy_static! {
static ref BENCHMARK_RESULTS: Mutex<BTreeMap<String, String>> = Mutex::new(BTreeMap::new());
}
fn add_result(category: &str, result: String) {
let mut results = BENCHMARK_RESULTS.lock().unwrap();
let index = results.len();
results.insert(format!("{:03}_{}", index, category), result);
}
fn bench_registry_creation(c: &mut Criterion) {
let mut group = c.benchmark_group("registry_creation");
let printed = Arc::new(AtomicBool::new(false));
group.bench_function("new_registry", |b| {
let printed_clone = printed.clone();
b.iter_custom(|iters| {
let start = Instant::now();
for _ in 0..iters {
let registry = black_box(ParserRegistry::new());
// Force evaluation to prevent optimization
black_box(registry.list_parsers());
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let ops_per_sec = iters as f64 / duration.as_secs_f64();
let time_per_op = duration.as_micros() as f64 / iters as f64;
let result = format!(
"{:<25} | {:>12.0} | {:>12.1}µs | {:>15}",
"Registry Creation", ops_per_sec, time_per_op, "N/A"
);
add_result("registry", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
});
group.finish();
}
fn bench_parser_lookup(c: &mut Criterion) {
let registry = Arc::new(ParserRegistry::new());
let models = vec![
"gpt-4",
"mistral-large",
"qwen-72b",
"llama-3.2",
"deepseek-v3",
"unknown-model",
];
let mut group = c.benchmark_group("parser_lookup");
for model in models {
let printed = Arc::new(AtomicBool::new(false));
let registry_clone = registry.clone();
group.bench_function(model, |b| {
let printed_clone = printed.clone();
let registry = registry_clone.clone();
b.iter_custom(|iters| {
let start = Instant::now();
for _ in 0..iters {
let parser = black_box(registry.get_parser(model));
// Force evaluation
black_box(parser.is_some());
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let ops_per_sec = iters as f64 / duration.as_secs_f64();
let time_per_op = duration.as_nanos() as f64 / iters as f64;
let result = format!(
"{:<25} | {:>12.0} | {:>12.1}ns | {:>15}",
format!("Lookup {}", model),
ops_per_sec,
time_per_op,
if registry.get_parser(model).is_some() {
"Found"
} else {
"Fallback"
}
);
add_result("lookup", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
});
}
group.finish();
}
fn bench_complete_parsing(c: &mut Criterion) {
let rt = Runtime::new().unwrap();
let registry = Arc::new(ParserRegistry::new());
let test_cases = vec![
("json_simple", "json", JSON_SIMPLE),
("json_array", "json", JSON_ARRAY),
("json_params", "json", JSON_WITH_PARAMS),
("mistral_single", "mistral", MISTRAL_FORMAT),
("mistral_multi", "mistral", MISTRAL_MULTI),
("qwen_single", "qwen", QWEN_FORMAT),
("qwen_multi", "qwen", QWEN_MULTI),
("llama", "llama", LLAMA_FORMAT),
("pythonic_single", "pythonic", PYTHONIC_FORMAT),
("pythonic_multi", "pythonic", PYTHONIC_MULTI),
("deepseek", "deepseek", DEEPSEEK_FORMAT),
("kimik2", "kimik2", KIMIK2_FORMAT),
("glm4", "glm4_moe", GLM4_FORMAT),
("step3", "step3", STEP3_FORMAT),
("gpt_oss", "gpt_oss", GPT_OSS_FORMAT),
];
let mut group = c.benchmark_group("complete_parsing");
for (name, parser_name, input) in test_cases {
let printed = Arc::new(AtomicBool::new(false));
let registry_clone = registry.clone();
let input_len = input.len();
group.throughput(Throughput::Bytes(input_len as u64));
group.bench_function(name, |b| {
let printed_clone = printed.clone();
let registry = registry_clone.clone();
let rt = rt.handle().clone();
b.iter_custom(|iters| {
let parser = registry.get_parser(parser_name).expect("Parser not found");
let start = Instant::now();
for _ in 0..iters {
let parser = parser.clone();
let result = rt.block_on(async { parser.parse_complete(input).await });
black_box(result.unwrap());
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let ops_per_sec = iters as f64 / duration.as_secs_f64();
let bytes_per_sec = (iters as f64 * input_len as f64) / duration.as_secs_f64();
let time_per_op = duration.as_micros() as f64 / iters as f64;
let result = format!(
"{:<25} | {:>10} | {:>12.0} | {:>12.0} | {:>10.1}µs",
name, input_len, ops_per_sec, bytes_per_sec, time_per_op
);
add_result("complete", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
});
}
group.finish();
}
fn bench_streaming_parsing(c: &mut Criterion) {
let rt = Runtime::new().unwrap();
let registry = Arc::new(ParserRegistry::new());
// Streaming test with chunked input
let chunks = vec![
r#"{"na"#,
r#"me": "sear"#,
r#"ch", "argu"#,
r#"ments": {"qu"#,
r#"ery": "rust prog"#,
r#"ramming", "li"#,
r#"mit": 10, "off"#,
r#"set": 0}"#,
r#"}"#,
];
let mut group = c.benchmark_group("streaming_parsing");
let printed = Arc::new(AtomicBool::new(false));
group.bench_function("json_streaming", |b| {
let printed_clone = printed.clone();
let registry = registry.clone();
let rt = rt.handle().clone();
b.iter_custom(|iters| {
let parser = registry.get_parser("json").expect("Parser not found");
let start = Instant::now();
for _ in 0..iters {
let parser = parser.clone();
let mut state = ParseState::new();
let mut complete_tools = Vec::new();
rt.block_on(async {
for chunk in &chunks {
if let StreamResult::ToolComplete(tool) =
parser.parse_incremental(chunk, &mut state).await.unwrap()
{
complete_tools.push(tool);
}
}
});
black_box(complete_tools);
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let ops_per_sec = iters as f64 / duration.as_secs_f64();
let time_per_op = duration.as_micros() as f64 / iters as f64;
let chunks_per_sec = (iters as f64 * chunks.len() as f64) / duration.as_secs_f64();
let result = format!(
"{:<25} | {:>10} | {:>12.0} | {:>12.0} | {:>10.1}µs",
"JSON Streaming",
chunks.len(),
ops_per_sec,
chunks_per_sec,
time_per_op
);
add_result("streaming", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
});
group.finish();
}
fn bench_concurrent_parsing(c: &mut Criterion) {
let rt = Runtime::new().unwrap();
let registry = Arc::new(ParserRegistry::new());
let parser = registry.get_parser("json").expect("Parser not found");
let thread_counts = vec![1, 2, 4, 8, 16, 32];
let operations_per_thread = 100;
let mut group = c.benchmark_group("concurrent_parsing");
group.measurement_time(Duration::from_secs(3));
for num_threads in thread_counts {
let printed = Arc::new(AtomicBool::new(false));
let parser_clone = parser.clone();
group.bench_with_input(
BenchmarkId::from_parameter(num_threads),
&num_threads,
|b, &threads| {
let printed_clone = printed.clone();
let parser = parser_clone.clone();
let rt = rt.handle().clone();
b.iter_custom(|_iters| {
let total_operations = Arc::new(AtomicU64::new(0));
let total_parsed = Arc::new(AtomicU64::new(0));
let start = Instant::now();
let handles: Vec<_> = (0..threads)
.map(|_thread_id| {
let parser = parser.clone();
let total_ops = total_operations.clone();
let total_p = total_parsed.clone();
let rt = rt.clone();
thread::spawn(move || {
let test_inputs = [JSON_SIMPLE, JSON_ARRAY, JSON_WITH_PARAMS];
for i in 0..operations_per_thread {
let input = test_inputs[i % test_inputs.len()];
let result =
rt.block_on(async { parser.parse_complete(input).await });
if let Ok(tools) = result {
total_p.fetch_add(tools.len() as u64, Ordering::Relaxed);
}
}
total_ops
.fetch_add(operations_per_thread as u64, Ordering::Relaxed);
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let total_ops = total_operations.load(Ordering::Relaxed);
let total_p = total_parsed.load(Ordering::Relaxed);
let ops_per_sec = total_ops as f64 / duration.as_secs_f64();
let tools_per_sec = total_p as f64 / duration.as_secs_f64();
let result = format!(
"{:<25} | {:>10} | {:>12.0} | {:>12.0} | {:>10}",
format!("{}_threads", threads),
total_ops,
ops_per_sec,
tools_per_sec,
threads
);
add_result("concurrent", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
},
);
}
group.finish();
}
fn bench_large_payloads(c: &mut Criterion) {
let rt = Runtime::new().unwrap();
let registry = Arc::new(ParserRegistry::new());
let parser = registry.get_parser("json").expect("Parser not found");
let sizes = vec![1, 10, 50, 100, 500];
let mut group = c.benchmark_group("large_payloads");
for size in sizes {
let large_json = generate_large_json(size);
let input_len = large_json.len();
let printed = Arc::new(AtomicBool::new(false));
let parser_clone = parser.clone();
group.throughput(Throughput::Bytes(input_len as u64));
group.bench_with_input(BenchmarkId::from_parameter(size), &size, |b, &num_tools| {
let printed_clone = printed.clone();
let parser = parser_clone.clone();
let rt = rt.handle().clone();
let input = &large_json;
b.iter_custom(|iters| {
let start = Instant::now();
for _ in 0..iters {
let parser = parser.clone();
let result = rt.block_on(async { parser.parse_complete(input).await });
black_box(result.unwrap());
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let ops_per_sec = iters as f64 / duration.as_secs_f64();
let bytes_per_sec = (iters as f64 * input_len as f64) / duration.as_secs_f64();
let time_per_op = duration.as_millis() as f64 / iters as f64;
let result = format!(
"{:<25} | {:>10} | {:>10} | {:>12.0} | {:>12.0} | {:>10.1}ms",
format!("{}_tools", num_tools),
num_tools,
input_len,
ops_per_sec,
bytes_per_sec,
time_per_op
);
add_result("large", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
});
}
group.finish();
}
fn bench_parser_reuse(c: &mut Criterion) {
let rt = Runtime::new().unwrap();
let mut group = c.benchmark_group("parser_reuse");
// Benchmark creating new registry each time
let printed_new = Arc::new(AtomicBool::new(false));
group.bench_function("new_registry_each_time", |b| {
let printed_clone = printed_new.clone();
let rt = rt.handle().clone();
b.iter_custom(|iters| {
let start = Instant::now();
for _ in 0..iters {
let registry = ParserRegistry::new();
let parser = registry.get_parser("json").unwrap();
let result = rt.block_on(async { parser.parse_complete(JSON_SIMPLE).await });
black_box(result.unwrap());
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let ops_per_sec = iters as f64 / duration.as_secs_f64();
let time_per_op = duration.as_micros() as f64 / iters as f64;
let result = format!(
"{:<25} | {:>12.0} | {:>12.1}µs | {:>15}",
"New Registry Each Time", ops_per_sec, time_per_op, "Baseline"
);
add_result("reuse", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
});
// Benchmark reusing registry
let printed_reuse = Arc::new(AtomicBool::new(false));
let shared_registry = Arc::new(ParserRegistry::new());
group.bench_function("reuse_registry", |b| {
let printed_clone = printed_reuse.clone();
let registry = shared_registry.clone();
let rt = rt.handle().clone();
b.iter_custom(|iters| {
let parser = registry.get_parser("json").unwrap();
let start = Instant::now();
for _ in 0..iters {
let parser = parser.clone();
let result = rt.block_on(async { parser.parse_complete(JSON_SIMPLE).await });
black_box(result.unwrap());
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let ops_per_sec = iters as f64 / duration.as_secs_f64();
let time_per_op = duration.as_micros() as f64 / iters as f64;
let result = format!(
"{:<25} | {:>12.0} | {:>12.1}µs | {:>15}",
"Reuse Registry", ops_per_sec, time_per_op, "Optimized"
);
add_result("reuse", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
});
// Benchmark reusing parser
let printed_parser = Arc::new(AtomicBool::new(false));
let shared_parser = shared_registry.get_parser("json").unwrap();
group.bench_function("reuse_parser", |b| {
let printed_clone = printed_parser.clone();
let parser = shared_parser.clone();
let rt = rt.handle().clone();
b.iter_custom(|iters| {
let start = Instant::now();
for _ in 0..iters {
let parser = parser.clone();
let result = rt.block_on(async { parser.parse_complete(JSON_SIMPLE).await });
black_box(result.unwrap());
}
let duration = start.elapsed();
if !printed_clone.load(Ordering::Relaxed) {
let ops_per_sec = iters as f64 / duration.as_secs_f64();
let time_per_op = duration.as_micros() as f64 / iters as f64;
let result = format!(
"{:<25} | {:>12.0} | {:>12.1}µs | {:>15}",
"Reuse Parser", ops_per_sec, time_per_op, "Best"
);
add_result("reuse", result);
printed_clone.store(true, Ordering::Relaxed);
}
duration
});
});
group.finish();
}
fn bench_latency_distribution(c: &mut Criterion) {
let rt = Runtime::new().unwrap();
let registry = Arc::new(ParserRegistry::new());
let test_cases = vec![
("json", JSON_SIMPLE),
("mistral", MISTRAL_FORMAT),
("qwen", QWEN_FORMAT),
("pythonic", PYTHONIC_FORMAT),
];
let mut group = c.benchmark_group("latency");
for (parser_name, input) in test_cases {
let printed = Arc::new(AtomicBool::new(false));
let registry_clone = registry.clone();
group.bench_function(parser_name, |b| {
let printed_clone = printed.clone();
let registry = registry_clone.clone();
let rt = rt.handle().clone();
b.iter_custom(|iters| {
let parser = registry.get_parser(parser_name).expect("Parser not found");
let total_duration = if !printed_clone.load(Ordering::Relaxed) {
let mut latencies = Vec::new();
// Warm up
for _ in 0..100 {
let parser = parser.clone();
rt.block_on(async { parser.parse_complete(input).await })
.unwrap();
}
// Measure for statistics
for _ in 0..1000 {
let parser = parser.clone();
let start = Instant::now();
rt.block_on(async { parser.parse_complete(input).await })
.unwrap();
let latency = start.elapsed();
latencies.push(latency);
}
latencies.sort();
let p50 = latencies[latencies.len() / 2];
let p95 = latencies[latencies.len() * 95 / 100];
let p99 = latencies[latencies.len() * 99 / 100];
let max = latencies.last().unwrap();
let result = format!(
"{:<25} | {:>10.1} | {:>10.1} | {:>10.1} | {:>10.1} | {:>10}",
parser_name,
p50.as_micros() as f64,
p95.as_micros() as f64,
p99.as_micros() as f64,
max.as_micros() as f64,
1000
);
add_result("latency", result);
printed_clone.store(true, Ordering::Relaxed);
// Return median for consistency
p50 * iters as u32
} else {
// Regular benchmark iterations
let start = Instant::now();
for _ in 0..iters {
let parser = parser.clone();
rt.block_on(async { parser.parse_complete(input).await })
.unwrap();
}
start.elapsed()
};
total_duration
});
});
}
group.finish();
}
// Print final summary table
fn print_summary() {
println!("\n{}", "=".repeat(120));
println!("TOOL PARSER BENCHMARK SUMMARY");
println!("{}", "=".repeat(120));
let results = BENCHMARK_RESULTS.lock().unwrap();
let mut current_category = String::new();
for (key, value) in results.iter() {
let category = key.split('_').skip(1).collect::<Vec<_>>().join("_");
if category != current_category {
current_category = category.clone();
// Print section header based on category
println!("\n{}", "-".repeat(120));
match category.as_str() {
"registry" => {
println!("REGISTRY OPERATIONS");
println!(
"{:<25} | {:>12} | {:>12} | {:>15}",
"Operation", "Ops/sec", "Time/op", "Notes"
);
}
"lookup" => {
println!("PARSER LOOKUP PERFORMANCE");
println!(
"{:<25} | {:>12} | {:>12} | {:>15}",
"Model", "Lookups/sec", "Time/lookup", "Result"
);
}
"complete" => {
println!("COMPLETE PARSING PERFORMANCE");
println!(
"{:<25} | {:>10} | {:>12} | {:>12} | {:>12}",
"Parser Format", "Size(B)", "Ops/sec", "Bytes/sec", "Time/op"
);
}
"streaming" => {
println!("STREAMING PARSING PERFORMANCE");
println!(
"{:<25} | {:>10} | {:>12} | {:>12} | {:>12}",
"Parser", "Chunks", "Ops/sec", "Chunks/sec", "Time/op"
);
}
"concurrent" => {
println!("CONCURRENT PARSING");
println!(
"{:<25} | {:>10} | {:>12} | {:>12} | {:>10}",
"Configuration", "Total Ops", "Ops/sec", "Tools/sec", "Threads"
);
}
"large" => {
println!("LARGE PAYLOAD PARSING");
println!(
"{:<25} | {:>10} | {:>10} | {:>12} | {:>12} | {:>12}",
"Payload", "Tools", "Size(B)", "Ops/sec", "Bytes/sec", "Time/op"
);
}
"reuse" => {
println!("PARSER REUSE COMPARISON");
println!(
"{:<25} | {:>12} | {:>12} | {:>15}",
"Strategy", "Ops/sec", "Time/op", "Performance"
);
}
"latency" => {
println!("LATENCY DISTRIBUTION");
println!(
"{:<25} | {:>10} | {:>10} | {:>10} | {:>10} | {:>10}",
"Parser", "P50(µs)", "P95(µs)", "P99(µs)", "Max(µs)", "Samples"
);
}
_ => {}
}
println!("{}", "-".repeat(120));
}
println!("{}", value);
}
println!("\n{}", "=".repeat(120));
// Print performance analysis
println!("\nPERFORMANCE ANALYSIS:");
println!("{}", "-".repeat(120));
// Calculate and display key metrics
if let Some(new_registry) = results.get("007_reuse") {
if let Some(reuse_parser) = results.get("009_reuse") {
// Extract ops/sec values
let new_ops: f64 = new_registry
.split('|')
.nth(1)
.and_then(|s| s.trim().parse().ok())
.unwrap_or(0.0);
let reuse_ops: f64 = reuse_parser
.split('|')
.nth(1)
.and_then(|s| s.trim().parse().ok())
.unwrap_or(0.0);
if new_ops > 0.0 && reuse_ops > 0.0 {
let improvement = (reuse_ops / new_ops - 1.0) * 100.0;
println!("Parser Reuse Improvement: {:.1}% faster", improvement);
if improvement < 100.0 {
println!("⚠️ WARNING: Parser reuse improvement is lower than expected!");
println!(" Expected: >100% improvement with singleton pattern");
println!(" Actual: {:.1}% improvement", improvement);
println!(" Recommendation: Implement global singleton registry");
}
}
}
}
println!("{}", "=".repeat(120));
}
fn run_benchmarks(c: &mut Criterion) {
bench_registry_creation(c);
bench_parser_lookup(c);
bench_complete_parsing(c);
bench_streaming_parsing(c);
bench_concurrent_parsing(c);
bench_large_payloads(c);
bench_parser_reuse(c);
bench_latency_distribution(c);
// Print summary at the end
print_summary();
}
criterion_group!(benches, run_benchmarks);
criterion::criterion_main!(benches);