first commit

This commit is contained in:
hailin 2025-08-08 17:20:00 +08:00
commit d0ad05f4fb
7 changed files with 121 additions and 0 deletions

8
README.txt Normal file
View File

@ -0,0 +1,8 @@
mamba env create -f hf-train-cu118.yaml --strict-channel-priority
mamba activate hf-train-cu118
pip install --upgrade pip
pip install --no-deps -r requirements-hf.txt --constraint constraints-cu118.txt
# 需要 deepspeed 时再装:
DS_BUILD_OPS=0 pip install "deepspeed==0.14.*" # 先不编译 CUDA 内核

10
check_core_cuda.sh Normal file
View File

@ -0,0 +1,10 @@
python - <<'PY'
import torch
print("PyTorch 版本:", torch.__version__)
print("CUDA runtime 版本:", torch.version.cuda)
print("GPU 可用:", torch.cuda.is_available())
if torch.cuda.is_available():
print("GPU 数量:", torch.cuda.device_count())
for i in range(torch.cuda.device_count()):
print(f" GPU {i}:", torch.cuda.get_device_name(i))
PY

11
check_hf.sh Normal file
View File

@ -0,0 +1,11 @@
python - <<'PY'
import transformers, accelerate, datasets, safetensors, sentencepiece, peft, bitsandbytes
print("Transformers:", transformers.__version__)
print("Accelerate:", accelerate.__version__)
print("Datasets:", datasets.__version__)
print("Safetensors:", safetensors.__version__)
print("SentencePiece:", sentencepiece.__version__)
print("PEFT:", peft.__version__)
print("BitsAndBytes:", bitsandbytes.__version__)
PY

30
check_train.sh Normal file
View File

@ -0,0 +1,30 @@
python - <<'PY'
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
import torch
model_id = "sshleifer/tiny-gpt2" # 极小模型
tok = AutoTokenizer.from_pretrained(model_id)
tok.pad_token = tok.eos_token
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train[:1%]")
def tok_fn(ex): return tok(ex["text"], truncation=True, padding="max_length", max_length=64)
ds = ds.map(tok_fn, batched=True, remove_columns=["text"])
mdl = AutoModelForCausalLM.from_pretrained(model_id)
collator = DataCollatorForLanguageModeling(tok, mlm=False)
args = TrainingArguments(
output_dir="out-mini",
per_device_train_batch_size=2,
num_train_epochs=1,
fp16=torch.cuda.is_available(),
logging_steps=2,
save_steps=10,
report_to="none",
)
trainer = Trainer(model=mdl, args=args, train_dataset=ds, data_collator=collator)
trainer.train()
print("✅ 训练链路 OK")
PY

3
constraints-cu118.txt Normal file
View File

@ -0,0 +1,3 @@
torch==2.1.2
torchvision==0.16.2
torchaudio==2.1.2

44
hf-train-cu118.yaml Normal file
View File

@ -0,0 +1,44 @@
name: hf-train-cu118
channels:
- pytorch
- nvidia
- conda-forge
dependencies:
- python=3.10
- pip
# ---- Torch 栈:固定 2.1.2 + cu118 ----
- pytorch=2.1.2
- torchvision=0.16.2
- torchaudio=2.1.2
- pytorch-cuda=11.8
# ---- 避坑Numpy 钉在 1.26.* ----
- numpy=1.26.*
# ---- 常用科学/系统库 ----
- pandas
- scipy
- pyarrow
- uvicorn
- git
# ---- HF 主栈 + 其运行时依赖(全部走 conda不让 pip 动依赖)----
- transformers>=4.40
- accelerate>=0.30
- datasets>=2.18
- evaluate>=0.4
- safetensors>=0.4
- sentencepiece>=0.1.99
- tokenizers=0.19.*
- huggingface_hub>=0.23
- tqdm>=4.66
- scikit-learn>=1.4
- tensorboard>=2.16
- packaging
- regex
- pyyaml
- requests
- fsspec
- dill
- multiprocess
- xxhash
- aiohttp
- psutil

15
requirements-hf.txt Normal file
View File

@ -0,0 +1,15 @@
# requirements-hf.txt HF 生态)
transformers>=4.40,<5.0
accelerate>=0.30
datasets>=2.18
evaluate>=0.4
safetensors>=0.4
sentencepiece>=0.1.99
tokenizers>=0.19,<0.21
huggingface_hub>=0.23
tqdm>=4.66
peft>=0.11
bitsandbytes>=0.43
tensorboard>=2.16
scikit-learn>=1.4
# deepspeed 单独装,别放进来