#!/usr/bin/env bash set -euo pipefail echo "==> Show Python / Torch / CUDA" python - <<'PY' import sys, torch print("Python:", sys.version.split()[0]) print("Torch:", torch.__version__) print("Torch CUDA tag:", torch.version.cuda) print("CUDA available:", torch.cuda.is_available()) PY # 选择 CUDA 工具链:优先 /usr/local/cuda-11.8,其次现有的 /usr/local/cuda-12.8 if [ -d /usr/local/cuda-11.8 ]; then export CUDA_HOME=/usr/local/cuda-11.8 echo "==> Using CUDA_HOME=${CUDA_HOME} (preferred for cu118)" elif [ -d /usr/local/cuda-12.8 ]; then export CUDA_HOME=/usr/local/cuda-12.8 echo "==> Using CUDA_HOME=${CUDA_HOME} (nvcc 12.8)" else echo "!! 未找到 /usr/local/cuda-11.8 或 /usr/local/cuda-12.8,请安装 CUDA toolkit (dev)。" exit 1 fi export PATH="${CUDA_HOME}/bin:${PATH}" echo "==> nvcc version" nvcc --version || { echo "nvcc not found via CUDA_HOME=${CUDA_HOME}"; exit 1; } # 3090 = sm_86 export TORCH_CUDA_ARCH_LIST="8.6" echo "==> Install build deps via mamba" mamba install -y -c conda-forge cmake ninja pybind11 libaio git echo "==> Upgrade Python build tools" pip install -U pip setuptools wheel # 固定到较稳的 DeepSpeed tag;需要最新版可改为 --branch master DS_TAG="v0.14.3" if [ ! -d DeepSpeed ]; then git clone --branch ${DS_TAG} https://github.com/microsoft/DeepSpeed.git fi cd DeepSpeed echo "==> Build & Install DeepSpeed (training kernels only)" export DS_BUILD_OPS=1 export DS_BUILD_AIO=1 export DS_BUILD_FUSED_ADAM=1 export DS_BUILD_CPU_ADAM=1 # 不启用推理/transformer内核,降低不必要的编译/兼容风险 # export DS_BUILD_TRANSFORMER=1 # 某些环境需要强制找 CUDA:export DS_FORCE_CUDA=1 # export DS_FORCE_CUDA=1 pip install . echo "==> Verify DeepSpeed env" python -m deepspeed.env_report echo "==> Smoke test: import FusedAdam" python - <<'PY' import deepspeed, torch from deepspeed.ops.adam import FusedAdam print("DeepSpeed:", deepspeed.__version__) print("Torch:", torch.__version__, "CUDA tag:", torch.version.cuda) print("GPU:", torch.cuda.get_device_name(0) if torch.cuda.is_available() else None) print("FusedAdam OK") PY echo "==> Create minimal HF Trainer single-GPU test (tiny model)" cd .. cat > ds_config_stage2_single.json <<'JSON' { "train_batch_size": 8, "train_micro_batch_size_per_gpu": 1, "gradient_accumulation_steps": 8, "zero_optimization": { "stage": 2, "overlap_comm": true, "contiguous_gradients": true }, "fp16": { "enabled": true }, "aio": { "block_size": 1048576, "queue_depth": 16, "thread_count": 1, "single_submit": false, "overlap_events": true, "verbose": false }, "gradient_clipping": 1.0, "steps_per_print": 1000, "wall_clock_breakdown": false } JSON cat > train_single_gpu_min.py <<'PY' from datasets import Dataset from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling import torch model_name = "sshleifer/tiny-gpt2" # 极小模型,快速验证 tok = AutoTokenizer.from_pretrained(model_name) if tok.pad_token is None: tok.pad_token = tok.eos_token data = ["hello world", "deepspeed single gpu", "trainer test", "fast check"] * 200 ds = Dataset.from_dict({"text": data}) def enc(e): return tok(e["text"], truncation=True, max_length=128) ds = ds.map(enc) collator = DataCollatorForLanguageModeling(tok, mlm=False) model = AutoModelForCausalLM.from_pretrained(model_name) args = TrainingArguments( output_dir="out-ds-single", per_device_train_batch_size=1, gradient_accumulation_steps=8, learning_rate=5e-4, num_train_epochs=1, logging_steps=10, save_steps=0, fp16=True, deepspeed="ds_config_stage2_single.json" ) trainer = Trainer(model=model, args=args, tokenizer=tok, train_dataset=ds, data_collator=collator) trainer.train() print("OK: single-GPU training finished.") PY echo "==> Run minimal single-GPU training with DeepSpeed Stage-2" CUDA_VISIBLE_DEVICES=0 python train_single_gpu_min.py echo "==> ALL DONE (single-GPU)."