472 lines
23 KiB
Markdown
472 lines
23 KiB
Markdown
# Reranker
|
|
|
|
- [Model List](#model-list)
|
|
- [Usage](#usage)
|
|
- [Citation](#citation)
|
|
|
|
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
|
|
You can get a relevance score by inputting query and passage to the reranker.
|
|
And the score can be mapped to a float value in [0,1] by sigmoid function.
|
|
|
|
For more detailed using, you can look [reranker-encoder only](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/inference/reranker/encoder_only) or [reranker-decoder only](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/inference/reranker/decoder_only)
|
|
|
|
## Model List
|
|
|
|
| Model | Base model | Language | layerwise | feature |
|
|
|:--------------------------------------------------------------------------|:--------:|:-----------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|
|
|
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
|
|
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
|
|
| [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
|
|
| [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
|
|
| [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
|
|
|
|
|
|
You can select the model according your senario and resource.
|
|
- For **multilingual**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
|
|
|
|
- For **Chinese or English**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
|
|
|
|
- For **efficiency**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and the low layer of [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
|
|
|
|
- For better performance, recommand [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
|
|
|
|
## Usage
|
|
### Using FlagEmbedding
|
|
|
|
#### 1. Auto Reranker
|
|
|
|
You can use `FlagAutoReranker` to load the model. For the **custom model** (not included in [`AUTO_RERANKER_MAPPING`](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/inference/reranker/model_mapping.py#L31)), you must specify the `model_class` parameter. You can also submit a pull request to add your **released model** to the [`AUTO_RERANKER_MAPPING`](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/inference/reranker/model_mapping.py#L31) dictionary. If need, you can create a new `<model>.py` file in [here](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/inference/reranker/encoder_only) or [here](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/inference/reranker/decoder_only).
|
|
|
|
```python
|
|
from FlagEmbedding import FlagAutoReranker
|
|
reranker = FlagAutoReranker.from_finetuned('BAAI/bge-reranker-large',
|
|
query_max_length=256,
|
|
passage_max_length=512,
|
|
use_fp16=True,
|
|
devices=['cuda:1']) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
|
score = reranker.compute_score(['query', 'passage'])
|
|
print(score) # -1.5263671875
|
|
|
|
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
|
score = reranker.compute_score(['query', 'passage'], normalize=True)
|
|
print(score) # 0.1785258315203034
|
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
|
print(scores) # [-5.60546875, 5.76171875]
|
|
|
|
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
|
|
print(scores) # [0.0036642203307843528, 0.9968641641227171]
|
|
```
|
|
|
|
For your **custom model** (assume the model is finetuned from `BAAI/bge-reranker-large`, then the model class is `encoder-only-base`), you can use the following code:
|
|
|
|
```python
|
|
from FlagEmbedding import FlagAutoReranker
|
|
reranker = FlagAutoReranker.from_finetuned('your_model_name_or_path',
|
|
model_class='encoder-only-base',
|
|
query_max_length=256,
|
|
passage_max_length=512,
|
|
use_fp16=True,
|
|
devices=['cuda:1']) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
|
score = reranker.compute_score(['query', 'passage'])
|
|
print(score)
|
|
```
|
|
|
|
The `model_class` parameter currently includes the following options:
|
|
- `encoder-only-base`: for encoder-only reranker model, such as `BAAI/bge-reranker-large`
|
|
- `decoder-only-base`: for decoder-only reranker model, such as `BAAI/bge-reranker-v2-gemma`
|
|
- `decoder-only-layerwise`: for decoder-only layerwise reranker model, such as `BAAI/bge-reranker-v2-minicpm-layerwise`
|
|
- `decoder-only-lightweight`: for decoder-only lightweight reranker model, such as `BAAI/bge-reranker-v2.5-gemma2-lightweight`
|
|
|
|
#### 2. Normal Reranker
|
|
|
|
For `FlagReranker`, it supports `BAAI/bge-reranker-base`, `BAAI/bge-reranker-large`, `BAAI/bge-reranker-v2-m3`:
|
|
|
|
```python
|
|
from FlagEmbedding import FlagReranker
|
|
reranker = FlagReranker(
|
|
'BAAI/bge-reranker-v2-m3',
|
|
query_max_length=256,
|
|
passage_max_length=512,
|
|
use_fp16=True,
|
|
devices=['cuda:1']
|
|
) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
|
|
|
score = reranker.compute_score(['query', 'passage'])
|
|
print(score) # -5.65234375
|
|
|
|
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
|
score = reranker.compute_score(['query', 'passage'], normalize=True)
|
|
print(score) # 0.003497010252573502
|
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
|
print(scores) # [-8.1875, 5.26171875]
|
|
|
|
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
|
|
print(scores) # [0.00027803096387751553, 0.9948403768236574]
|
|
```
|
|
|
|
#### 3. LLM-based Reranker
|
|
|
|
For `FlagLLMReranker`, it supports `BAAI/bge-reranker-v2-gemma`:
|
|
|
|
```python
|
|
from FlagEmbedding import FlagLLMReranker
|
|
reranker = FlagLLMReranker(
|
|
'BAAI/bge-reranker-v2-gemma',
|
|
query_max_length=256,
|
|
passage_max_length=512,
|
|
use_fp16=True,
|
|
devices=['cuda:1']
|
|
) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
|
|
|
score = reranker.compute_score(['query', 'passage'])
|
|
print(score)
|
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
|
print(scores)
|
|
```
|
|
|
|
#### 4. LLM-based Layerwise Reranker
|
|
|
|
For `LayerWiseFlagLLMReranker`, it supports `BAAI/bge-reranker-v2-minicpm-layerwise`:
|
|
|
|
```python
|
|
from FlagEmbedding import LayerWiseFlagLLMReranker
|
|
reranker = LayerWiseFlagLLMReranker(
|
|
'BAAI/bge-reranker-v2-minicpm-layerwise',
|
|
query_max_length=256,
|
|
passage_max_length=512,
|
|
use_fp16=True,
|
|
devices=['cuda:1']
|
|
) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
|
|
|
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
|
|
print(score)
|
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
|
|
print(scores)
|
|
```
|
|
|
|
#### 5. LLM-based lightweight Reranker
|
|
|
|
For `LightWeightFlagLLMReranker`, it supports `BAAI/bge-reranker-v2.5-gemma2-lightweight`:
|
|
|
|
```python
|
|
from FlagEmbedding import LightWeightFlagLLMReranker
|
|
reranker = LightWeightFlagLLMReranker(
|
|
'BAAI/bge-reranker-v2.5-gemma2-lightweight',
|
|
query_max_length=256,
|
|
passage_max_length=512,
|
|
use_fp16=True,
|
|
devices=['cuda:1']
|
|
) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
|
|
|
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28], compress_ratio=2, compress_layers=[24, 40]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
|
|
print(score)
|
|
|
|
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28], compress_ratio=2, compress_layers=[24, 40])
|
|
print(scores)
|
|
```
|
|
|
|
### Using Huggingface transformers
|
|
|
|
#### 1. Normal Reranker
|
|
|
|
It supports `BAAI/bge-reranker-base`, `BAAI/bge-reranker-large`, `BAAI/bge-reranker-v2-m3`:
|
|
|
|
```python
|
|
import torch
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
|
|
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3')
|
|
model.eval()
|
|
|
|
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
|
with torch.no_grad():
|
|
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
|
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
|
print(scores)
|
|
```
|
|
|
|
#### 2. LLM-based reranker
|
|
|
|
It supports `BAAI/bge-reranker-v2-gemma`:
|
|
|
|
```python
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
|
if prompt is None:
|
|
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
|
|
sep = "\n"
|
|
prompt_inputs = tokenizer(prompt,
|
|
return_tensors=None,
|
|
add_special_tokens=False)['input_ids']
|
|
sep_inputs = tokenizer(sep,
|
|
return_tensors=None,
|
|
add_special_tokens=False)['input_ids']
|
|
inputs = []
|
|
for query, passage in pairs:
|
|
query_inputs = tokenizer(f'A: {query}',
|
|
return_tensors=None,
|
|
add_special_tokens=False,
|
|
max_length=max_length * 3 // 4,
|
|
truncation=True)
|
|
passage_inputs = tokenizer(f'B: {passage}',
|
|
return_tensors=None,
|
|
add_special_tokens=False,
|
|
max_length=max_length,
|
|
truncation=True)
|
|
item = tokenizer.prepare_for_model(
|
|
[tokenizer.bos_token_id] + query_inputs['input_ids'],
|
|
sep_inputs + passage_inputs['input_ids'],
|
|
truncation='only_second',
|
|
max_length=max_length,
|
|
padding=False,
|
|
return_attention_mask=False,
|
|
return_token_type_ids=False,
|
|
add_special_tokens=False
|
|
)
|
|
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
|
|
item['attention_mask'] = [1] * len(item['input_ids'])
|
|
inputs.append(item)
|
|
return tokenizer.pad(
|
|
inputs,
|
|
padding=True,
|
|
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
|
|
pad_to_multiple_of=8,
|
|
return_tensors='pt',
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma')
|
|
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma')
|
|
yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0]
|
|
model.eval()
|
|
|
|
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
|
with torch.no_grad():
|
|
inputs = get_inputs(pairs, tokenizer)
|
|
scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float()
|
|
print(scores)
|
|
```
|
|
|
|
#### 3. LLM-based layerwise reranker
|
|
|
|
It supports `BAAI/bge-reranker-v2-minicpm-layerwise`:
|
|
|
|
```python
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
|
if prompt is None:
|
|
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
|
|
sep = "\n"
|
|
prompt_inputs = tokenizer(prompt,
|
|
return_tensors=None,
|
|
add_special_tokens=False)['input_ids']
|
|
sep_inputs = tokenizer(sep,
|
|
return_tensors=None,
|
|
add_special_tokens=False)['input_ids']
|
|
inputs = []
|
|
for query, passage in pairs:
|
|
query_inputs = tokenizer(f'A: {query}',
|
|
return_tensors=None,
|
|
add_special_tokens=False,
|
|
max_length=max_length * 3 // 4,
|
|
truncation=True)
|
|
passage_inputs = tokenizer(f'B: {passage}',
|
|
return_tensors=None,
|
|
add_special_tokens=False,
|
|
max_length=max_length,
|
|
truncation=True)
|
|
item = tokenizer.prepare_for_model(
|
|
[tokenizer.bos_token_id] + query_inputs['input_ids'],
|
|
sep_inputs + passage_inputs['input_ids'],
|
|
truncation='only_second',
|
|
max_length=max_length,
|
|
padding=False,
|
|
return_attention_mask=False,
|
|
return_token_type_ids=False,
|
|
add_special_tokens=False
|
|
)
|
|
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
|
|
item['attention_mask'] = [1] * len(item['input_ids'])
|
|
inputs.append(item)
|
|
return tokenizer.pad(
|
|
inputs,
|
|
padding=True,
|
|
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
|
|
pad_to_multiple_of=8,
|
|
return_tensors='pt',
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
|
|
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
|
model = model.to('cuda')
|
|
model.eval()
|
|
|
|
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
|
with torch.no_grad():
|
|
inputs = get_inputs(pairs, tokenizer).to(model.device)
|
|
all_scores = model(**inputs, return_dict=True, cutoff_layers=[28])
|
|
all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]]
|
|
print(all_scores)
|
|
```
|
|
|
|
#### 4. LLM-based lightweight reranker
|
|
|
|
It supports `BAAI/bge-reranker-v2.5-gemma2-lightweight`:
|
|
|
|
```python
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
def last_logit_pool(logits: torch.Tensor,
|
|
attention_mask: torch.Tensor) -> torch.Tensor:
|
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
|
if left_padding:
|
|
return logits[:, -1]
|
|
else:
|
|
sequence_lengths = attention_mask.sum(dim=1) - 1
|
|
batch_size = logits.shape[0]
|
|
return torch.stack([logits[i, sequence_lengths[i]] for i in range(batch_size)], dim=0)
|
|
|
|
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
|
if prompt is None:
|
|
prompt = "Predict whether passage B contains an answer to query A."
|
|
sep = "\n"
|
|
prompt_inputs = tokenizer(prompt,
|
|
return_tensors=None,
|
|
add_special_tokens=False)['input_ids']
|
|
sep_inputs = tokenizer(sep,
|
|
return_tensors=None,
|
|
add_special_tokens=False)['input_ids']
|
|
inputs = []
|
|
query_lengths = []
|
|
prompt_lengths = []
|
|
for query, passage in pairs:
|
|
query_inputs = tokenizer(f'A: {query}',
|
|
return_tensors=None,
|
|
add_special_tokens=False,
|
|
max_length=max_length * 3 // 4,
|
|
truncation=True)
|
|
passage_inputs = tokenizer(f'B: {passage}',
|
|
return_tensors=None,
|
|
add_special_tokens=False,
|
|
max_length=max_length,
|
|
truncation=True)
|
|
item = tokenizer.prepare_for_model(
|
|
[tokenizer.bos_token_id] + query_inputs['input_ids'],
|
|
sep_inputs + passage_inputs['input_ids'],
|
|
truncation='only_second',
|
|
max_length=max_length,
|
|
padding=False,
|
|
return_attention_mask=False,
|
|
return_token_type_ids=False,
|
|
add_special_tokens=False
|
|
)
|
|
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
|
|
item['attention_mask'] = [1] * len(item['input_ids'])
|
|
inputs.append(item)
|
|
query_lengths.append(len([tokenizer.bos_token_id] + query_inputs['input_ids'] + sep_inputs))
|
|
prompt_lengths.append(len(sep_inputs + prompt_inputs))
|
|
|
|
return tokenizer.pad(
|
|
inputs,
|
|
padding=True,
|
|
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
|
|
pad_to_multiple_of=8,
|
|
return_tensors='pt',
|
|
), query_lengths, prompt_lengths
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2.5-gemma2-lightweight', trust_remote_code=True)
|
|
tokenizer.padding_side = 'right'
|
|
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2.5-gemma2-lightweight', trust_remote_code=True)
|
|
model = model.to('cuda')
|
|
model.eval()
|
|
|
|
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
|
with torch.no_grad():
|
|
inputs, query_lengths, prompt_lengths = get_inputs(pairs, tokenizer)
|
|
inputs = inputs.to(model.device)
|
|
outputs = model(**inputs,
|
|
return_dict=True,
|
|
cutoff_layers=[28],
|
|
compress_ratio=2,
|
|
compress_layer=[24, 40],
|
|
query_lengths=query_lengths,
|
|
prompt_lengths=prompt_lengths)
|
|
scores = []
|
|
for i in range(len(outputs.logits)):
|
|
logits = last_logit_pool(outputs.logits[i], outputs.attention_masks[i])
|
|
scores.append(logits.cpu().float().tolist())
|
|
print(scores)
|
|
```
|
|
|
|
## Load model in local
|
|
|
|
### Load llm-based layerwise reranker in local
|
|
|
|
If you download reranker-v2-minicpm-layerwise, you can load it with the following method:
|
|
|
|
1. make sure `configuration_minicpm_reranker.py` and `modeling_minicpm_reranker.py` from [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) in your local path.
|
|
2. modify the following part of `config.json`:
|
|
|
|
```
|
|
"auto_map": {
|
|
"AutoConfig": "configuration_minicpm_reranker.LayerWiseMiniCPMConfig",
|
|
"AutoModel": "modeling_minicpm_reranker.LayerWiseMiniCPMModel",
|
|
"AutoModelForCausalLM": "modeling_minicpm_reranker.LayerWiseMiniCPMForCausalLM"
|
|
},
|
|
```
|
|
|
|
### Load llm-based lightweight reranker in local
|
|
|
|
1. make sure `gemma_config.py` and `gemma_model.py` from [BAAI/bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight/tree/main) in your local path.
|
|
2. modify the following part of config.json:
|
|
|
|
```
|
|
"auto_map": {
|
|
"AutoConfig": "gemma_config.CostWiseGemmaConfig",
|
|
"AutoModel": "gemma_model.CostWiseGemmaModel",
|
|
"AutoModelForCausalLM": "gemma_model.CostWiseGemmaForCausalLM"
|
|
},
|
|
```
|
|
|
|
## Citation
|
|
|
|
If you find this repository useful, please consider giving a star :star: and citation
|
|
|
|
```
|
|
@misc{li2023making,
|
|
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|
|
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
|
|
year={2023},
|
|
eprint={2312.15503},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
@misc{chen2024bge,
|
|
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
year={2024},
|
|
eprint={2402.03216},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
@misc{li2024makingtextembeddersfewshot,
|
|
title={Making Text Embedders Few-Shot Learners},
|
|
author={Chaofan Li and MingHao Qin and Shitao Xiao and Jianlyu Chen and Kun Luo and Yingxia Shao and Defu Lian and Zheng Liu},
|
|
year={2024},
|
|
eprint={2409.15700},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.IR},
|
|
url={https://arxiv.org/abs/2409.15700},
|
|
}
|
|
``` |