embed-bge-m3/FlagEmbedding/research/LLARA/pretrain/run.py

132 lines
4.6 KiB
Python

import logging
import os
import sys
from pathlib import Path
import torch
import transformers
from transformers import AutoTokenizer, HfArgumentParser, set_seed, AutoConfig, Trainer
from arguments import ModelArguments, DataArguments, \
PretrainTrainingArguments as TrainingArguments
from data import TrainDatasetForEmbedding, EmbedCollator
from load_model import get_model
from modeling import PreModel
from trainer import PreTrainer
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info("Model parameters %s", model_args)
logger.info("Data parameters %s", data_args)
# Set seed
set_seed(training_args.seed)
num_labels = 1
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
cache_dir=model_args.cache_dir,
)
logger.info('Config: %s', config)
model = get_model(model_args, training_args.gradient_checkpointing)
tokenizer = AutoTokenizer.from_pretrained(
# model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
model_args.model_name_or_path,
token=model_args.token,
cache_dir=model_args.cache_dir,
use_fast=False
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
# special_tokens_dict = {'additional_special_tokens': ['<s1>', '<s2>', '<s3>', '<s4>',
# '<s5>', '<s6>', '<s7>', '<s8>',
# '<s9>', '<s10>', '<s11>', '<s12>',
# '<s13>', '<s14>', '<s15>', '<s16>', ]}
# tokenizer.add_special_tokens(special_tokens_dict)
tokenizer.padding_side = "left" # Allow batched inference
print(tokenizer)
special_tokens = ['<s1>', '<s2>', '<s3>', '<s4>',
'<s5>', '<s6>', '<s7>', '<s8>',
'<s9>', '<s10>', '<s11>', '<s12>',
'<s13>', '<s14>', '<s15>', '<s16>', ]
current_vocab = tokenizer.get_vocab()
tokens_to_add = [token for token in special_tokens if token not in current_vocab]
if tokens_to_add:
special_tokens_dict = {'additional_special_tokens': tokens_to_add}
tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
print(tokenizer)
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
train_dataset = TrainDatasetForEmbedding(tokenizer, args=data_args)
trainer = Trainer(
model=model,
train_dataset=train_dataset,
args=training_args,
data_collator=EmbedCollator(
tokenizer=tokenizer,
cutoff_len=data_args.cutoff_len,
pad_to_multiple_of=8,
return_tensors="pt",
padding=True
)
)
Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir)
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
if training_args.deepspeed:
trainer.deepspeed.save_checkpoint(training_args.output_dir)
print("\n If there's a warning about missing keys above, please disregard :)")
if __name__ == "__main__":
main()