evalscope/docs/en/user_guides/backend/rageval_backend/mteb.md

32 KiB

(mteb)=

MTEB

This framework supports MTEB and CMTEB, with the following details:

  • MTEB (Massive Text Embedding Benchmark) is a large-scale benchmark designed to measure the performance of text embedding models across diverse embedding tasks. MTEB includes 56 datasets covering 8 tasks and supports over 112 different languages. The goal of this benchmark is to assist developers in finding the best text embedding models suitable for various tasks.

  • C-MTEB (Chinese Massive Text Embedding Benchmark) is a dedicated evaluation benchmark for Chinese text vectors, built on MTEB, aimed at assessing the performance of Chinese text vector models. C-MTEB collects 35 public datasets and is divided into 6 categories of evaluation tasks, including retrieval, re-ranking, semantic text similarity (STS), classification, pair classification, and clustering.

Supported Datasets

Here is an overview of the available tasks and datasets in C-MTEB:

Name Hub Link Description Type Category Number of Test Samples
T2Retrieval C-MTEB/T2Retrieval T2Ranking: A large-scale Chinese paragraph ranking benchmark Retrieval s2p 24,832
MMarcoRetrieval C-MTEB/MMarcoRetrieval mMARCO is the multilingual version of the MS MARCO paragraph ranking dataset Retrieval s2p 7,437
DuRetrieval C-MTEB/DuRetrieval A large-scale Chinese web search engine paragraph retrieval benchmark Retrieval s2p 4,000
CovidRetrieval C-MTEB/CovidRetrieval COVID-19 news articles Retrieval s2p 949
CmedqaRetrieval C-MTEB/CmedqaRetrieval Online medical consultation texts Retrieval s2p 3,999
EcomRetrieval C-MTEB/EcomRetrieval Paragraph retrieval dataset collected from Alibaba e-commerce search engine systems Retrieval s2p 1,000
MedicalRetrieval C-MTEB/MedicalRetrieval Paragraph retrieval dataset collected from Alibaba medical search engine systems Retrieval s2p 1,000
VideoRetrieval C-MTEB/VideoRetrieval Paragraph retrieval dataset collected from Alibaba video search engine systems Retrieval s2p 1,000
T2Reranking C-MTEB/T2Reranking T2Ranking: A large-scale Chinese paragraph ranking benchmark Re-ranking s2p 24,382
MMarcoReranking C-MTEB/MMarco-reranking mMARCO is the multilingual version of the MS MARCO paragraph ranking dataset Re-ranking s2p 7,437
CMedQAv1 C-MTEB/CMedQAv1-reranking Chinese community medical Q&A Re-ranking s2p 2,000
CMedQAv2 C-MTEB/CMedQAv2-reranking Chinese community medical Q&A Re-ranking s2p 4,000
Ocnli C-MTEB/OCNLI Original Chinese natural language inference dataset Pair Classification s2s 3,000
Cmnli C-MTEB/CMNLI Chinese multi-class natural language inference Pair Classification s2s 139,000
CLSClusteringS2S C-MTEB/CLSClusteringS2S Clustering titles from the CLS dataset. Clustering based on 13 sets of main categories. Clustering s2s 10,000
CLSClusteringP2P C-MTEB/CLSClusteringP2P Clustering titles + abstracts from the CLS dataset. Clustering based on 13 sets of main categories. Clustering p2p 10,000
ThuNewsClusteringS2S C-MTEB/ThuNewsClusteringS2S Clustering titles from the THUCNews dataset Clustering s2s 10,000
ThuNewsClusteringP2P C-MTEB/ThuNewsClusteringP2P Clustering titles + abstracts from the THUCNews dataset Clustering p2p 10,000
ATEC C-MTEB/ATEC ATEC NLP Sentence Pair Similarity Competition STS s2s 20,000
BQ C-MTEB/BQ Banking Question Semantic Similarity STS s2s 10,000
LCQMC C-MTEB/LCQMC Large-scale Chinese Question Matching Corpus STS s2s 12,500
PAWSX C-MTEB/PAWSX Translated PAWS evaluation pairs STS s2s 2,000
STSB C-MTEB/STSB Translated STS-B into Chinese STS s2s 1,360
AFQMC C-MTEB/AFQMC Ant Financial Question Matching Corpus STS s2s 3,861
QBQTC C-MTEB/QBQTC QQ Browser Query Title Corpus STS s2s 5,000
TNews C-MTEB/TNews-classification News Short Text Classification Classification s2s 10,000
IFlyTek C-MTEB/IFlyTek-classification Long Text Classification of Application Descriptions Classification s2s 2,600
Waimai C-MTEB/waimai-classification Sentiment Analysis of User Reviews on Food Delivery Platforms Classification s2s 1,000
OnlineShopping C-MTEB/OnlineShopping-classification Sentiment Analysis of User Reviews on Online Shopping Websites Classification s2s 1,000
MultilingualSentiment C-MTEB/MultilingualSentiment-classification A set of multilingual sentiment datasets grouped into three categories: positive, neutral, negative Classification s2s 3,000
JDReview C-MTEB/JDReview-classification Reviews of iPhone Classification s2s 533

For retrieval tasks, a sample of 100,000 candidates (including the ground truth) is drawn from the entire corpus to reduce inference costs.

- [Datasets Supported by CMTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/research/C_MTEB/README.md)
- [Datasets Supported by MTEB](https://github.com/embeddings-benchmark/mteb/blob/main/docs/tasks.md)

Environment Setup

Install dependencies

pip install mteb

Configure Evaluation Parameters

The framework supports two evaluation modes: single-stage evaluation and two-stage evaluation:

  • Single-Stage Evaluation: Directly use the model for prediction and compute metrics. Supports tasks such as retrieval, re-ranking, and classification for embedding models.

  • Two-Stage Evaluation: Use the model for retrieval first, then use the model for re-ranking, and compute metrics. Supports re-ranking models.

Single-stage Evaluation

Example configuration file:

one_stage_task_cfg = {
    "work_dir": "outputs",
    "eval_backend": "RAGEval",
    "eval_config": {
        "tool": "MTEB",
        "model": [
            {
                "model_name_or_path": "AI-ModelScope/m3e-base",
                "pooling_mode": None,
                "max_seq_length": 512,
                "prompt": "",
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 128,
                },
            }
        ],
        "eval": {
            "tasks": [
                "TNews",
                "CLSClusteringS2S",
                "T2Reranking",
                "T2Retrieval",
                "ATEC",
            ],
            "verbosity": 2,
            "overwrite_results": True,
            "topk": 10,
            "limits": 500,
        },
    },
}

Evaluation of API Model Services

When using a remote API model service, the configuration file example is as follows:

from evalscope import TaskConfig

task_cfg = TaskConfig(
    eval_backend='RAGEval',  # Specifies the evaluation backend to use
    eval_config={
        'tool': 'MTEB',  # The evaluation tool to be used
        'model': [
            {
                'model_name': 'text-embedding-v3',  # Name of the model
                'api_base': 'https://dashscope.aliyuncs.com/compatible-mode/v1',  # Base URL for the API service
                'api_key': env.get('DASHSCOPE_API_KEY', 'EMPTY'),  # API key for authentication
                'dimensions': 1024,  # Dimensionality of the model's output
                'encode_kwargs': {  # Encoding arguments
                    'batch_size': 10,  # Size of the batch to process at once
                },
            }
        ],
        'eval': {
            'tasks': [
                'T2Retrieval',  # Task or tasks to evaluate
            ],
            'verbosity': 2,  # Level of detail in evaluation output
            'overwrite_results': True,  # Whether to overwrite existing results
            'limits': 30,  # Limit on the number of items to evaluate
        },
    },
)

Two-stage Evaluation

Example configuration file: first perform retrieval, then reranking:

two_stage_task_cfg = {
    "work_dir": "outputs",
    "eval_backend": "RAGEval",
    "eval_config": {
        "tool": "MTEB",
        "model": [
            {
                "model_name_or_path": "AI-ModelScope/m3e-base",
                "is_cross_encoder": False,
                "max_seq_length": 512,
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 64,
                },
            },
            {
                "model_name_or_path": "OpenBMB/MiniCPM-Reranker",
                "is_cross_encoder": True,
                "max_seq_length": 512,
                "prompt": "Generate a retrieval representation for this question",
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 32,
                },
            },
        ],
        "eval": {
            "tasks": ["T2Retrieval"],
            "verbosity": 2,
            "overwrite_results": True,
            "topk": 5,
            "limits": 100,
        },
    },
}

Parameter Explanation

  • eval_backend: Default value is RAGEval, indicating the use of the RAGEval evaluation backend.
  • eval_config: A dictionary containing the following fields:
    • tool: Evaluation tool, using MTEB.
    • model: List of model configurations. For single-stage evaluation, only one model can be placed; for two-stage evaluation, two models are passed in, with the first model used for retrieval and the second model used for reranking, including the following fields:
      • For locally loaded model support:

        • model_name_or_path: str: Model name or path, supports automatic model download from the ModelScope repository.
        • is_cross_encoder: bool: Whether the model is a cross encoder, default is False; for reranking models, set to True.
        • pooling_mode: Optional[str]: Pooling mode, default is mean. Options are: "cls", "lasttoken", "max", "mean", "mean_sqrt_len_tokens", or "weightedmean". For bge series models, set to "cls".
        • max_seq_length: int: Maximum sequence length, default is 512.
        • prompt: str: Prompt used in front of the model for retrieval tasks, default is an empty string.
        • model_kwargs: dict: Model keyword arguments, default value is {"torch_dtype": "auto"}.
        • config_kwargs: Dict[str, Any]: Configuration keyword arguments, default is an empty dictionary.
        • encode_kwargs: dict: Encoding keyword arguments, default is:
          {
              "show_progress_bar": True,
              "batch_size": 32
          }
          
        • hub: str: Model source, can be "modelscope" or "huggingface".
      • For remote API model service support:

        • model_name: str: Model name.
        • api_base: str: Model API service address.
        • api_key: str: Model API key.
        • dimension: int: Model output dimension.
        • encode_kwargs: dict: Encoding keyword arguments, default is:
          {
              "batch_size": 10
          }
          
        • hub: str Source of the model, can be "modelscope" or "huggingface".
    • eval: A dictionary containing the following fields:
      • tasks: List[str] Task names, refer to the task list
      • top_k: int Select the top K results, for retrieval tasks
      • verbosity: int Level of detail, ranging from 0-3
      • overwrite_results: bool Whether to overwrite results, default is True
      • limits: Optional[int] Limit on the number of samples, default is None; not recommended to set for retrieval tasks
      • hub: str Source of the dataset, can be "modelscope" or "huggingface"

Model Evaluation

from evalscope.run import run_task
from evalscope.utils.logger import get_logger
logger = get_logger()

one_stage_task_cfg = one_stage_task_cfg
# or
# two_stage_task_cfg = two_stage_task_cfg

# Run task
run_task(task_cfg=one_stage_task_cfg) 
# or 
# run_task(task_cfg=two_stage_task_cfg)

The following is an example of the output:

One-Stage Evaluation

Outputs
:caption: outputs/m3e-base/master/TNews.json

{
  "dataset_revision": "317f262bf1e6126357bbe89e875451e4b0938fe4",
  "evaluation_time": 16.50650382041931,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "validation": [
      {
        "accuracy": 0.4744,
        "f1": 0.44562489526640825,
        "f1_weighted": 0.47540307398330806,
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.4744,
        "scores_per_experiment": [
          {
            "accuracy": 0.48,
            "f1": 0.4536376605217497,
            "f1_weighted": 0.47800277926811163
          },
          {
            "accuracy": 0.48,
            "f1": 0.44713633954639176,
            "f1_weighted": 0.4826984434763292
          },
          {
            "accuracy": 0.462,
            "f1": 0.433365706955334,
            "f1_weighted": 0.4640970055245127
          },
          {
            "accuracy": 0.484,
            "f1": 0.4586732839614161,
            "f1_weighted": 0.4857359110392786
          },
          {
            "accuracy": 0.462,
            "f1": 0.4293797541165097,
            "f1_weighted": 0.4632657330831137
          },
          {
            "accuracy": 0.474,
            "f1": 0.44775120246296396,
            "f1_weighted": 0.4737182842092953
          },
          {
            "accuracy": 0.47,
            "f1": 0.4431197566080463,
            "f1_weighted": 0.4714830140231783
          },
          {
            "accuracy": 0.472,
            "f1": 0.44322381694059326,
            "f1_weighted": 0.47100005556357255
          },
          {
            "accuracy": 0.484,
            "f1": 0.45454749692062835,
            "f1_weighted": 0.4856239367465818
          },
          {
            "accuracy": 0.476,
            "f1": 0.44541393463044954,
            "f1_weighted": 0.47840557689910646
          }
        ]
      }
    ]
  },
  "task_name": "TNews"
}

Two-stage Evaluation

first stage
:caption: outputs/stage1/m3e-base/v1/T2Retrieval.json

{
  "dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
  "evaluation_time": 599.5170171260834,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "dev": [
      {
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.73143,
        "map_at_1": 0.22347,
        "map_at_10": 0.63237,
        "map_at_100": 0.67533,
        "map_at_1000": 0.67651,
        "map_at_20": 0.66282,
        "map_at_3": 0.43874,
        "map_at_5": 0.54049,
        "mrr_at_1": 0.7898912852884447,
        "mrr_at_10": 0.8402654617870331,
        "mrr_at_100": 0.8421827758769684,
        "mrr_at_1000": 0.8422583001072272,
        "mrr_at_20": 0.8415411456315557,
        "mrr_at_3": 0.8307469752761716,
        "mrr_at_5": 0.8368029984218875,
        "nauc_map_at_1000_diff1": 0.17749400860890877,
        "nauc_map_at_1000_max": 0.42844516520725967,
        "nauc_map_at_1000_std": 0.18789871694419072,
        "nauc_map_at_100_diff1": 0.17747467084779375,
        "nauc_map_at_100_max": 0.42732291785494575,
        "nauc_map_at_100_std": 0.18694287087286737,
        "nauc_map_at_10_diff1": 0.19976199493034202,
        "nauc_map_at_10_max": 0.3374436217668296,
        "nauc_map_at_10_std": 0.07951451707732717,
        "nauc_map_at_1_diff1": 0.41727578149080663,
        "nauc_map_at_1_max": -0.1402656422184478,
        "nauc_map_at_1_std": -0.26168722519030313,
        "nauc_map_at_20_diff1": 0.1811898211371171,
        "nauc_map_at_20_max": 0.40563441466210043,
        "nauc_map_at_20_std": 0.15927727170010608,
        "nauc_map_at_3_diff1": 0.31255422845809033,
        "nauc_map_at_3_max": 0.007523677231905161,
        "nauc_map_at_3_std": -0.19578481884353466,
        "nauc_map_at_5_diff1": 0.26073699217160473,
        "nauc_map_at_5_max": 0.14665611579604088,
        "nauc_map_at_5_std": -0.09600383298672226,
        "nauc_mrr_at_1000_diff1": 0.3819666309367981,
        "nauc_mrr_at_1000_max": 0.6285393024619401,
        "nauc_mrr_at_1000_std": 0.3294970299417527,
        "nauc_mrr_at_100_diff1": 0.3819436006743644,
        "nauc_mrr_at_100_max": 0.6286346262471935,
        "nauc_mrr_at_100_std": 0.32963045935037844,
        "nauc_mrr_at_10_diff1": 0.3819124721154632,
        "nauc_mrr_at_10_max": 0.6292778905762176,
        "nauc_mrr_at_10_std": 0.3298187966196067,
        "nauc_mrr_at_1_diff1": 0.3862589251033909,
        "nauc_mrr_at_1_max": 0.589976680174432,
        "nauc_mrr_at_1_std": 0.2780515387897469,
        "nauc_mrr_at_20_diff1": 0.38198959771391816,
        "nauc_mrr_at_20_max": 0.6290569436652999,
        "nauc_mrr_at_20_std": 0.3301570340189363,
        "nauc_mrr_at_3_diff1": 0.3825046940733129,
        "nauc_mrr_at_3_max": 0.6282507269128365,
        "nauc_mrr_at_3_std": 0.3260807934869131,
        "nauc_mrr_at_5_diff1": 0.3816317396711923,
        "nauc_mrr_at_5_max": 0.6288655177904692,
        "nauc_mrr_at_5_std": 0.3298854062538469,
        "nauc_ndcg_at_1000_diff1": 0.21319598381916555,
        "nauc_ndcg_at_1000_max": 0.5328295949130256,
        "nauc_ndcg_at_1000_std": 0.2946773445135694,
        "nauc_ndcg_at_100_diff1": 0.2089807772703975,
        "nauc_ndcg_at_100_max": 0.5239397690321543,
        "nauc_ndcg_at_100_std": 0.29123456982125717,
        "nauc_ndcg_at_10_diff1": 0.20555333230027603,
        "nauc_ndcg_at_10_max": 0.44316027023003046,
        "nauc_ndcg_at_10_std": 0.1921835220940756,
        "nauc_ndcg_at_1_diff1": 0.3862589251033909,
        "nauc_ndcg_at_1_max": 0.589976680174432,
        "nauc_ndcg_at_1_std": 0.2780515387897469,
        "nauc_ndcg_at_20_diff1": 0.20754208582741446,
        "nauc_ndcg_at_20_max": 0.4786092392092643,
        "nauc_ndcg_at_20_std": 0.23536973680564616,
        "nauc_ndcg_at_3_diff1": 0.1902823773882388,
        "nauc_ndcg_at_3_max": 0.5400466380622567,
        "nauc_ndcg_at_3_std": 0.2713874990424778,
        "nauc_ndcg_at_5_diff1": 0.18279298790691637,
        "nauc_ndcg_at_5_max": 0.4916119327522918,
        "nauc_ndcg_at_5_std": 0.2375397192963552,
        "nauc_precision_at_1000_diff1": -0.20510380600112582,
        "nauc_precision_at_1000_max": 0.4958820760698651,
        "nauc_precision_at_1000_std": 0.5402465580496146,
        "nauc_precision_at_100_diff1": -0.1994322347949809,
        "nauc_precision_at_100_max": 0.5206762748551254,
        "nauc_precision_at_100_std": 0.5568154081333078,
        "nauc_precision_at_10_diff1": -0.16707155441197413,
        "nauc_precision_at_10_max": 0.5600612846655972,
        "nauc_precision_at_10_std": 0.49419688804691536,
        "nauc_precision_at_1_diff1": 0.3862589251033909,
        "nauc_precision_at_1_max": 0.589976680174432,
        "nauc_precision_at_1_std": 0.2780515387897469,
        "nauc_precision_at_20_diff1": -0.18471041949530417,
        "nauc_precision_at_20_max": 0.5458950955439645,
        "nauc_precision_at_20_std": 0.5355982267058214,
        "nauc_precision_at_3_diff1": -0.03826790088047189,
        "nauc_precision_at_3_max": 0.5833083970750171,
        "nauc_precision_at_3_std": 0.380196662597275,
        "nauc_precision_at_5_diff1": -0.11789367842600275,
        "nauc_precision_at_5_max": 0.5708494593335263,
        "nauc_precision_at_5_std": 0.42860609671688105,
        "nauc_recall_at_1000_diff1": 0.1341309660059583,
        "nauc_recall_at_1000_max": 0.5923755841077135,
        "nauc_recall_at_1000_std": 0.5980459502693942,
        "nauc_recall_at_100_diff1": 0.12181394285840096,
        "nauc_recall_at_100_max": 0.47090136790318127,
        "nauc_recall_at_100_std": 0.3959369184297595,
        "nauc_recall_at_10_diff1": 0.17356300971546512,
        "nauc_recall_at_10_max": 0.25475707245853674,
        "nauc_recall_at_10_std": 0.041819982320384745,
        "nauc_recall_at_1_diff1": 0.41727578149080663,
        "nauc_recall_at_1_max": -0.1402656422184478,
        "nauc_recall_at_1_std": -0.26168722519030313,
        "nauc_recall_at_20_diff1": 0.14273713155999543,
        "nauc_recall_at_20_max": 0.36251116771924663,
        "nauc_recall_at_20_std": 0.1912123941692314,
        "nauc_recall_at_3_diff1": 0.2873719855400218,
        "nauc_recall_at_3_max": -0.041198403561830285,
        "nauc_recall_at_3_std": -0.21921947922872737,
        "nauc_recall_at_5_diff1": 0.23680082643694844,
        "nauc_recall_at_5_max": 0.06580524171324151,
        "nauc_recall_at_5_std": -0.14104561361502632,
        "ndcg_at_1": 0.78989,
        "ndcg_at_10": 0.73143,
        "ndcg_at_100": 0.78829,
        "ndcg_at_1000": 0.80026,
        "ndcg_at_20": 0.75787,
        "ndcg_at_3": 0.7417,
        "ndcg_at_5": 0.72641,
        "precision_at_1": 0.78989,
        "precision_at_10": 0.37304,
        "precision_at_100": 0.04828,
        "precision_at_1000": 0.00511,
        "precision_at_20": 0.21403,
        "precision_at_3": 0.65461,
        "precision_at_5": 0.54942,
        "recall_at_1": 0.22347,
        "recall_at_10": 0.73318,
        "recall_at_100": 0.91093,
        "recall_at_1000": 0.97197,
        "recall_at_20": 0.81286,
        "recall_at_3": 0.46573,
        "recall_at_5": 0.59383
      }
    ]
  },
  "task_name": "T2Retrieval"
}

second stage
:caption: outputs/stage2/jina-reranker-v2-base-multilingual/master/T2Retrieval.json

{
  "dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
  "evaluation_time": 332.15709686279297,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "dev": [
      {
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.661,
        "map_at_1": 0.24264,
        "map_at_10": 0.56291,
        "map_at_100": 0.56291,
        "map_at_1000": 0.56291,
        "map_at_20": 0.56291,
        "map_at_3": 0.4714,
        "map_at_5": 0.56291,
        "mrr_at_1": 0.841969139049623,
        "mrr_at_10": 0.8689147524694633,
        "mrr_at_100": 0.8689147524694633,
        "mrr_at_1000": 0.8689147524694633,
        "mrr_at_20": 0.8689147524694633,
        "mrr_at_3": 0.8664883979192248,
        "mrr_at_5": 0.8689147524694633,
        "nauc_map_at_1000_diff1": 0.12071580301051653,
        "nauc_map_at_1000_max": 0.2536691069727338,
        "nauc_map_at_1000_std": 0.343624832364704,
        "nauc_map_at_100_diff1": 0.12071580301051653,
        "nauc_map_at_100_max": 0.2536691069727338,
        "nauc_map_at_100_std": 0.343624832364704,
        "nauc_map_at_10_diff1": 0.12071580301051653,
        "nauc_map_at_10_max": 0.2536691069727338,
        "nauc_map_at_10_std": 0.343624832364704,
        "nauc_map_at_1_diff1": 0.47964980727810325,
        "nauc_map_at_1_max": -0.08015044571696166,
        "nauc_map_at_1_std": 0.3507257834956417,
        "nauc_map_at_20_diff1": 0.12071580301051653,
        "nauc_map_at_20_max": 0.2536691069727338,
        "nauc_map_at_20_std": 0.343624832364704,
        "nauc_map_at_3_diff1": 0.23481937699306626,
        "nauc_map_at_3_max": 0.10372745264123306,
        "nauc_map_at_3_std": 0.45345158923063256,
        "nauc_map_at_5_diff1": 0.12071580301051653,
        "nauc_map_at_5_max": 0.2536691069727338,
        "nauc_map_at_5_std": 0.343624832364704,
        "nauc_mrr_at_1000_diff1": 0.23393918304502795,
        "nauc_mrr_at_1000_max": 0.8703379129725659,
        "nauc_mrr_at_1000_std": 0.5785333616122065,
        "nauc_mrr_at_100_diff1": 0.23393918304502795,
        "nauc_mrr_at_100_max": 0.8703379129725659,
        "nauc_mrr_at_100_std": 0.5785333616122065,
        "nauc_mrr_at_10_diff1": 0.23393918304502795,
        "nauc_mrr_at_10_max": 0.8703379129725659,
        "nauc_mrr_at_10_std": 0.5785333616122065,
        "nauc_mrr_at_1_diff1": 0.2520016067648708,
        "nauc_mrr_at_1_max": 0.8560897633767299,
        "nauc_mrr_at_1_std": 0.5642467684745208,
        "nauc_mrr_at_20_diff1": 0.23393918304502795,
        "nauc_mrr_at_20_max": 0.8703379129725659,
        "nauc_mrr_at_20_std": 0.5785333616122065,
        "nauc_mrr_at_3_diff1": 0.2343988881957151,
        "nauc_mrr_at_3_max": 0.8695482778251757,
        "nauc_mrr_at_3_std": 0.5799167198804328,
        "nauc_mrr_at_5_diff1": 0.23393918304502795,
        "nauc_mrr_at_5_max": 0.8703379129725659,
        "nauc_mrr_at_5_std": 0.5785333616122065,
        "nauc_ndcg_at_1000_diff1": 0.11252208055013257,
        "nauc_ndcg_at_1000_max": 0.3417865079349515,
        "nauc_ndcg_at_1000_std": 0.3623961771041499,
        "nauc_ndcg_at_100_diff1": 0.11252208055013257,
        "nauc_ndcg_at_100_max": 0.3417865079349515,
        "nauc_ndcg_at_100_std": 0.3623961771041499,
        "nauc_ndcg_at_10_diff1": 0.10015448775533999,
        "nauc_ndcg_at_10_max": 0.3761759074862075,
        "nauc_ndcg_at_10_std": 0.35152523471339914,
        "nauc_ndcg_at_1_diff1": 0.2524564785684737,
        "nauc_ndcg_at_1_max": 0.8566368743831702,
        "nauc_ndcg_at_1_std": 0.5635391925059349,
        "nauc_ndcg_at_20_diff1": 0.11228113618796766,
        "nauc_ndcg_at_20_max": 0.34274993051851965,
        "nauc_ndcg_at_20_std": 0.36216437469674284,
        "nauc_ndcg_at_3_diff1": -0.062134030685870506,
        "nauc_ndcg_at_3_max": 0.7183183844837573,
        "nauc_ndcg_at_3_std": 0.3352626268658533,
        "nauc_ndcg_at_5_diff1": -0.04476981761624879,
        "nauc_ndcg_at_5_max": 0.6272060974309411,
        "nauc_ndcg_at_5_std": 0.21341258393783158,
        "nauc_precision_at_1000_diff1": -0.3554940965683014,
        "nauc_precision_at_1000_max": 0.605443274008298,
        "nauc_precision_at_1000_std": -0.13073611213585504,
        "nauc_precision_at_100_diff1": -0.35549409656830133,
        "nauc_precision_at_100_max": 0.6054432740082977,
        "nauc_precision_at_100_std": -0.13073611213585531,
        "nauc_precision_at_10_diff1": -0.3554940965683011,
        "nauc_precision_at_10_max": 0.6054432740082981,
        "nauc_precision_at_10_std": -0.1307361121358551,
        "nauc_precision_at_1_diff1": 0.2524564785684737,
        "nauc_precision_at_1_max": 0.8566368743831702,
        "nauc_precision_at_1_std": 0.5635391925059349,
        "nauc_precision_at_20_diff1": -0.3554940965683011,
        "nauc_precision_at_20_max": 0.6054432740082981,
        "nauc_precision_at_20_std": -0.1307361121358551,
        "nauc_precision_at_3_diff1": -0.3377658698816377,
        "nauc_precision_at_3_max": 0.6780151277792397,
        "nauc_precision_at_3_std": 0.12291559606586676,
        "nauc_precision_at_5_diff1": -0.3554940965683011,
        "nauc_precision_at_5_max": 0.6054432740082981,
        "nauc_precision_at_5_std": -0.1307361121358551,
        "nauc_recall_at_1000_diff1": 0.1091970342988605,
        "nauc_recall_at_1000_max": 0.18339955163544436,
        "nauc_recall_at_1000_std": 0.30756376767627086,
        "nauc_recall_at_100_diff1": 0.1091970342988605,
        "nauc_recall_at_100_max": 0.18339955163544436,
        "nauc_recall_at_100_std": 0.30756376767627086,
        "nauc_recall_at_10_diff1": 0.1091970342988605,
        "nauc_recall_at_10_max": 0.18339955163544436,
        "nauc_recall_at_10_std": 0.30756376767627086,
        "nauc_recall_at_1_diff1": 0.47964980727810325,
        "nauc_recall_at_1_max": -0.08015044571696166,
        "nauc_recall_at_1_std": 0.3507257834956417,
        "nauc_recall_at_20_diff1": 0.1091970342988605,
        "nauc_recall_at_20_max": 0.18339955163544436,
        "nauc_recall_at_20_std": 0.30756376767627086,
        "nauc_recall_at_3_diff1": 0.22013063499116758,
        "nauc_recall_at_3_max": 0.054749114965246065,
        "nauc_recall_at_3_std": 0.4258163949018153,
        "nauc_recall_at_5_diff1": 0.1091970342988605,
        "nauc_recall_at_5_max": 0.18339955163544436,
        "nauc_recall_at_5_std": 0.30756376767627086,
        "ndcg_at_1": 0.84188,
        "ndcg_at_10": 0.661,
        "ndcg_at_100": 0.6534,
        "ndcg_at_1000": 0.6534,
        "ndcg_at_20": 0.65358,
        "ndcg_at_3": 0.7826,
        "ndcg_at_5": 0.74517,
        "precision_at_1": 0.84188,
        "precision_at_10": 0.27471,
        "precision_at_100": 0.02747,
        "precision_at_1000": 0.00275,
        "precision_at_20": 0.13736,
        "precision_at_3": 0.68633,
        "precision_at_5": 0.54942,
        "recall_at_1": 0.24264,
        "recall_at_10": 0.59383,
        "recall_at_100": 0.59383,
        "recall_at_1000": 0.59383,
        "recall_at_20": 0.59383,
        "recall_at_3": 0.48934,
        "recall_at_5": 0.59383
      }
    ]
  },
  "task_name": "T2Retrieval"
}

Custom Dataset Evaluation

[Custom Retrieval Dataset](../../../advanced_guides/custom_dataset/embedding.md)