244 lines
9.4 KiB
Markdown
244 lines
9.4 KiB
Markdown
# 👍 贡献基准评测
|
||
|
||
EvalScope作为[ModelScope](https://modelscope.cn)的官方评测工具,其基准评测功能正在持续优化中!我们诚邀您参考本教程,轻松添加自己的评测基准,并与广大社区成员分享您的贡献。一起助力EvalScope的成长,让我们的工具更加出色!
|
||
|
||
下面以`MMLU-Pro`为例,介绍如何添加基准评测,主要包含上传数据集、注册数据集、编写评测任务三个步骤。
|
||
|
||
## 上传基准评测数据集
|
||
|
||
上传基准评测数据集到ModelScope,这可以让用户一键加载数据集,让更多用户受益。当然,如果数据集已经存在,可以跳过这一步。
|
||
|
||
```{seealso}
|
||
例如:[modelscope/MMLU-Pro](https://modelscope.cn/datasets/modelscope/MMLU-Pro/summary),参考[数据集上传教程](https://www.modelscope.cn/docs/datasets/create)。
|
||
```
|
||
|
||
请确保数据可以被modelscope加载,测试代码如下:
|
||
|
||
```python
|
||
from modelscope import MsDataset
|
||
|
||
dataset = MsDataset.load("modelscope/MMLU-Pro") # 替换为你的数据集
|
||
```
|
||
|
||
## 注册基准评测
|
||
|
||
在EvalScope中添加基准评测。
|
||
|
||
### 创建文件结构
|
||
|
||
首先[Fork EvalScope](https://github.com/modelscope/evalscope/fork) 仓库,即创建一个自己的EvalScope仓库副本,将其clone到本地。
|
||
|
||
然后,在`evalscope/benchmarks/`目录下添加基准评测,结构如下:
|
||
|
||
```text
|
||
evalscope/benchmarks/
|
||
├── benchmark_name
|
||
│ ├── __init__.py
|
||
│ ├── benchmark_name_adapter.py
|
||
│ └── ...
|
||
```
|
||
具体到`MMLU-Pro`,结构如下:
|
||
|
||
```text
|
||
evalscope/benchmarks/
|
||
├── mmlu_pro
|
||
│ ├── __init__.py
|
||
│ ├── mmlu_pro_adapter.py
|
||
│ └── ...
|
||
```
|
||
|
||
### 注册`Benchmark`
|
||
|
||
我们需要在`benchmark_name_adapter.py`中注册`Benchmark`,使得EvalScope能够加载我们添加的基准测试。以`MMLU-Pro`为例,主要包含以下内容:
|
||
|
||
- 导入`Benchmark`和`DataAdapter`
|
||
- 注册`Benchmark`,指定:
|
||
- `name`:基准测试名称
|
||
- `dataset_id`:基准测试数据集ID,用于加载基准测试数据集
|
||
- `model_adapter`:基准测试模型默认适配器。支持两种:
|
||
- `OutputType.GENERATION`:通用文本生成模型评测,通过输入prompt,返回模型生成的文本
|
||
- `OutputType.MULTIPLE_CHOICE`:多选题评测,通过logits来计算选项的概率,返回最大概率选项
|
||
- `output_types`:基准测试输出类型,支持多选:
|
||
- `OutputType.GENERATION`:通用文本生成模型评测
|
||
- `OutputType.MULTIPLE_CHOICE`:多选题评测输出logits
|
||
- `subset_list`:基准测试数据集的子数据集
|
||
- `metric_list`:基准测试评估指标
|
||
- `few_shot_num`:评测的In Context Learning样本数量
|
||
- `train_split`:基准测试训练集,用于采样ICL样例
|
||
- `eval_split`:基准测试评估集
|
||
- `prompt_template`:基准测试提示模板
|
||
- 创建`MMLUProAdapter`类,继承自`DataAdapter`。
|
||
|
||
```{tip}
|
||
默认`subset_list`, `train_split`, `eval_split` 可以从数据集预览中获取,例如[MMLU-Pro预览](https://modelscope.cn/datasets/modelscope/MMLU-Pro/dataPeview)
|
||
|
||

|
||
```
|
||
|
||
代码示例如下:
|
||
|
||
```python
|
||
from evalscope.benchmarks import Benchmark, DataAdapter
|
||
from evalscope.constants import EvalType, OutputType
|
||
|
||
SUBSET_LIST = [
|
||
'computer science', 'math', 'chemistry', 'engineering', 'law', 'biology', 'health', 'physics', 'business',
|
||
'philosophy', 'economics', 'other', 'psychology', 'history'
|
||
] # 自定义的子数据集列表
|
||
|
||
@Benchmark.register(
|
||
name='mmlu_pro',
|
||
pretty_name='MMLU-Pro',
|
||
dataset_id='modelscope/MMLU-Pro',
|
||
model_adapter=OutputType.GENERATION,
|
||
output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
|
||
subset_list=SUBSET_LIST,
|
||
metric_list=['AverageAccuracy'],
|
||
few_shot_num=5,
|
||
train_split='validation',
|
||
eval_split='test',
|
||
prompt_template=
|
||
'The following are multiple choice questions (with answers) about {subset_name}. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n{query}', # noqa: E501
|
||
)
|
||
class MMLUProAdapter(DataAdapter):
|
||
|
||
def __init__(self, **kwargs):
|
||
super().__init__(**kwargs)
|
||
```
|
||
|
||
|
||
## 编写评测逻辑
|
||
|
||
完成`DataAdapter`的编写,即可在EvalScope中添加评测任务。需要实现如下方法:
|
||
|
||
- `gen_prompt`:生成模型输入prompt。
|
||
- `get_gold_answer`:解析数据集的标准答案。
|
||
- `parse_pred_result`:解析模型输出,可以根据不同的eval_type返回不同的答案解析方式。
|
||
- `match`:匹配模型输出和数据集标准答案,给出打分。
|
||
|
||
```{note}
|
||
若默认`load`逻辑不符合需求,可以重写`load`方法,例如:可以实现根据指定的字段对数据集划分子数据集。
|
||
```
|
||
|
||
完整示例代码如下:
|
||
|
||
```python
|
||
class MMLUProAdapter(DataAdapter):
|
||
|
||
def __init__(self, **kwargs):
|
||
super().__init__(**kwargs)
|
||
|
||
self.choices = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
|
||
|
||
def load(self, **kwargs):
|
||
# default load all data
|
||
kwargs['subset_list'] = ['default']
|
||
data_dict = super().load(**kwargs)
|
||
# use `category` as subset key
|
||
return self.reformat_subset(data_dict, subset_key='category')
|
||
|
||
def gen_prompt(self, input_d: Dict, subset_name: str, few_shot_list: list, **kwargs) -> Any:
|
||
if self.few_shot_num > 0:
|
||
prefix = self.format_fewshot_examples(few_shot_list)
|
||
else:
|
||
prefix = ''
|
||
query = prefix + 'Q: ' + input_d['question'] + '\n' + \
|
||
self.__form_options(input_d['options']) + '\n'
|
||
|
||
full_prompt = self.prompt_template.format(subset_name=subset_name, query=query)
|
||
return self.gen_prompt_data(full_prompt)
|
||
|
||
def format_fewshot_examples(self, few_shot_list):
|
||
# load few-shot prompts for each category
|
||
prompts = ''
|
||
for index, d in enumerate(few_shot_list):
|
||
prompts += 'Q: ' + d['question'] + '\n' + \
|
||
self.__form_options(d['options']) + '\n' + \
|
||
d['cot_content'] + '\n\n'
|
||
return prompts
|
||
|
||
|
||
def __form_options(self, options: list):
|
||
option_str = 'Options are:\n'
|
||
for opt, choice in zip(options, self.choices):
|
||
option_str += f'({choice}): {opt}' + '\n'
|
||
return option_str
|
||
|
||
def get_gold_answer(self, input_d: dict) -> str:
|
||
"""
|
||
Parse the raw input labels (gold).
|
||
|
||
Args:
|
||
input_d: input raw data. Depending on the dataset.
|
||
|
||
Returns:
|
||
The parsed input. e.g. gold answer ... Depending on the dataset.
|
||
"""
|
||
return input_d['answer']
|
||
|
||
|
||
def parse_pred_result(self, result: str, raw_input_d: dict = None, eval_type: str = EvalType.CHECKPOINT) -> str:
|
||
"""
|
||
Parse the predicted result and extract proper answer.
|
||
|
||
Args:
|
||
result: Predicted answer from the model. Usually a string for chat.
|
||
raw_input_d: The raw input. Depending on the dataset.
|
||
eval_type: 'checkpoint' or 'service' or `custom`, default: 'checkpoint'
|
||
|
||
Returns:
|
||
The parsed answer. Depending on the dataset. Usually a string for chat.
|
||
"""
|
||
if self.model_adapter == OutputType.MULTIPLE_CHOICE:
|
||
return result
|
||
else:
|
||
return ResponseParser.parse_first_option(result)
|
||
|
||
|
||
def match(self, gold: str, pred: str) -> float:
|
||
"""
|
||
Match the gold answer and the predicted answer.
|
||
|
||
Args:
|
||
gold (Any): The golden answer. Usually a string for chat/multiple-choice-questions.
|
||
e.g. 'A', extracted from get_gold_answer method.
|
||
pred (Any): The predicted answer. Usually a string for chat/multiple-choice-questions.
|
||
e.g. 'B', extracted from parse_pred_result method.
|
||
|
||
Returns:
|
||
The match result. Usually a score (float) for chat/multiple-choice-questions.
|
||
"""
|
||
return exact_match(gold=gold, pred=pred)
|
||
|
||
```
|
||
|
||
## 运行评测
|
||
|
||
调试代码,看看是否能正常运行。
|
||
|
||
```python
|
||
from evalscope import run_task, TaskConfig
|
||
task_cfg = TaskConfig(
|
||
model='Qwen/Qwen2.5-0.5B-Instruct',
|
||
datasets=['mmlu_pro'],
|
||
limit=10,
|
||
dataset_args={'mmlu_pro': {'subset_list': ['computer science', 'math']}},
|
||
debug=True
|
||
)
|
||
run_task(task_cfg=task_cfg)
|
||
```
|
||
|
||
输出如下:
|
||
|
||
```text
|
||
+-----------------------+-----------+-----------------+------------------+-------+---------+---------+
|
||
| Model | Dataset | Metric | Subset | Num | Score | Cat.0 |
|
||
+=======================+===========+=================+==================+=======+=========+=========+
|
||
| Qwen2.5-0.5B-Instruct | mmlu_pro | AverageAccuracy | computer science | 10 | 0.1 | default |
|
||
+-----------------------+-----------+-----------------+------------------+-------+---------+---------+
|
||
| Qwen2.5-0.5B-Instruct | mmlu_pro | AverageAccuracy | math | 10 | 0.1 | default |
|
||
+-----------------------+-----------+-----------------+------------------+-------+---------+---------+
|
||
```
|
||
|
||
运行没问题的话,就可以提交[PR](https://github.com/modelscope/evalscope/pulls)了,我们将尽快合并你的贡献,让更多用户来使用你贡献的基准评测。如果你不知道如何提交PR,可以查看我们的[指南](https://github.com/modelscope/evalscope/blob/main/CONTRIBUTING.md),快来试一试吧🚀
|