504 lines
36 KiB
Markdown
504 lines
36 KiB
Markdown
# 支持的数据集
|
||
|
||
## 1. 原生支持的数据集
|
||
|
||
```{tip}
|
||
目前框架原生支持如下数据集,若您需要的数据集不在列表中,可以提交[issue](https://github.com/modelscope/evalscope/issues),我们会尽快支持;也可以参考[基准评测添加指南](../advanced_guides/add_benchmark.md),自行添加数据集并提交[PR](https://github.com/modelscope/evalscope/pulls),欢迎贡献。
|
||
|
||
您也可以使用本框架支持的其他工具进行评测,如[OpenCompass](../user_guides/backend/opencompass_backend.md)进行语言模型评测;或使用[VLMEvalKit](../user_guides/backend/vlmevalkit_backend.md)进行多模态模型评测。
|
||
```
|
||
|
||
### LLM评测集
|
||
|
||
| 名称 | 数据集ID | 任务类别 | 备注 |
|
||
|-------------------|----------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|
|
||
| `aime24` | [HuggingFaceH4/aime_2024](https://modelscope.cn/datasets/HuggingFaceH4/aime_2024/summary) | 数学竞赛 | |
|
||
| `aime25` | [opencompass/AIME2025](https://modelscope.cn/datasets/opencompass/AIME2025/summary) | 数学竞赛 | Part1,2 |
|
||
| `alpaca_eval`<sup>3</sup> | [AI-ModelScope/alpaca_eval](https://www.modelscope.cn/datasets/AI-ModelScope/alpaca_eval/dataPeview) | 指令遵循 | <details><summary>注意事项</summary>暂不支持`length-controlled winrate`;官方Judge模型为`gpt-4-1106-preview`,baseline模型为`gpt-4-turbo`</summary> |
|
||
| `arc` | [modelscope/ai2_arc](https://modelscope.cn/datasets/modelscope/ai2_arc/summary) | 考试 | |
|
||
| `arena_hard`<sup>3</sup> | [AI-ModelScope/arena-hard-auto-v0.1](https://modelscope.cn/datasets/AI-ModelScope/arena-hard-auto-v0.1/summary) | 综合推理 | <details><summary>注意事项</summary>暂不支持`style-controled winrate`;官方Judge模型为`gpt-4-1106-preview`,baseline模型为`gpt-4-0314` </summary> |
|
||
| `bbh` | [modelscope/bbh](https://modelscope.cn/datasets/modelscope/bbh/summary) | 综合推理 | |
|
||
| `ceval` | [modelscope/ceval-exam](https://modelscope.cn/datasets/modelscope/ceval-exam/summary) | 中文-综合考试 | |
|
||
| `chinese_simpleqa`<sup>3</sup> | [AI-ModelScope/Chinese-SimpleQA](https://modelscope.cn/datasets/AI-ModelScope/Chinese-SimpleQA/summary) | 中文知识问答 | 使用 `primary_category`字段作为子数据集 |
|
||
| `cmmlu` | [modelscope/cmmlu](https://modelscope.cn/datasets/modelscope/cmmlu/summary) | 中文-综合考试 | |
|
||
| `competition_math`| [modelscope/competition_math](https://modelscope.cn/datasets/modelscope/competition_math/summary) | 数学竞赛 | 使用`level`字段作为子数据集 |
|
||
| `drop` | [AI-ModelScope/DROP](https://modelscope.cn/datasets/AI-ModelScope/DROP/summary) | 阅读理解,推理 | |
|
||
| `gpqa`| [modelscope/gpqa](https://modelscope.cn/datasets/modelscope/gpqa/summary) | 专家级考试 | |
|
||
| `gsm8k` | [modelscope/gsm8k](https://modelscope.cn/datasets/modelscope/gsm8k/summary) | 数学问题 | |
|
||
| `hellaswag` | [modelscope/hellaswag](https://modelscope.cn/datasets/modelscope/hellaswag/summary) | 常识推理 | |
|
||
| `humaneval`<sup>2</sup> | [modelscope/humaneval](https://modelscope.cn/datasets/modelscope/humaneval/summary) | 代码生成 | |
|
||
| `ifeval`<sup>4</sup> | [modelscope/ifeval](https://modelscope.cn/datasets/opencompass/ifeval/summary) | 指令遵循 | |
|
||
| `iquiz` | [modelscope/iquiz](https://modelscope.cn/datasets/AI-ModelScope/IQuiz/summary) | 智商和情商 | |
|
||
| `live_code_bench`<sup>2,4</sup> | [AI-ModelScope/code_generation_lite](https://modelscope.cn/datasets/AI-ModelScope/code_generation_lite/summary) | 代码生成 | <details><summary>说明</summary> 子数据集支持 `release_v1`,`release_v5`, `v1`, `v4_v5` 等版本标签;`datase-args`中支持设置`'extra_params': {'start_date': '2024-12-01','end_date': '2025-01-01'} `来筛选特定时间范围题目 </details> |
|
||
| `math_500` | [AI-ModelScope/MATH-500](https://modelscope.cn/datasets/AI-ModelScope/MATH-500/summary) | 数学竞赛 | 使用`level`字段作为子数据集 |
|
||
| `maritime_bench` | [HiDolphin/MaritimeBench](https://modelscope.cn/datasets/HiDolphin/MaritimeBench/summary) | 航运知识 | |
|
||
| `mmlu` | [modelscope/mmlu](https://modelscope.cn/datasets/modelscope/mmlu/summary) | 综合考试 | |
|
||
| `mmlu_pro` | [modelscope/mmlu-pro](https://modelscope.cn/datasets/modelscope/mmlu-pro/summary) | 综合考试 | 使用`category`字段作为子数据集 |
|
||
| `mmlu_redux` | [AI-ModelScope/mmlu-redux-2.0](https://modelscope.cn/datasets/AI-ModelScope/mmlu-redux-2.0/summary) | 综合考试 | |
|
||
| `musr` | [AI-ModelScope/MuSR](https://www.modelscope.cn/datasets/AI-ModelScope/MuSR/summary) | 多步软推理 | |
|
||
| `process_bench` | [Qwen/ProcessBench](https://www.modelscope.cn/datasets/Qwen/ProcessBench/summary) | 数学过程推理 | |
|
||
| `race` | [modelscope/race](https://modelscope.cn/datasets/modelscope/race/summary) | 阅读理解 | |
|
||
| `simple_qa`<sup>3</sup> | [AI-ModelScope/SimpleQA](https://modelscope.cn/datasets/AI-ModelScope/SimpleQA/summary) | 知识问答 |
|
||
| `super_gpqa` | [m-a-p/SuperGPQA](https://www.modelscope.cn/datasets/m-a-p/SuperGPQA/dataPeview) | 专家级考试 | 使用`field`字段作为子数据集 |
|
||
| `tool_bench` | [AI-ModelScope/ToolBench-Statich](https://modelscope.cn/datasets/AI-ModelScope/ToolBench-Static/summary) | 工具调用 | 参考[使用说明](../third_party/toolbench.md) |
|
||
| `trivia_qa` | [modelscope/trivia_qa](https://modelscope.cn/datasets/modelscope/trivia_qa/summary) | 知识问答 | |
|
||
| `truthful_qa`<sup>1</sup> | [modelscope/truthful_qa](https://modelscope.cn/datasets/modelscope/truthful_qa/summary) | 安全性 | |
|
||
| `winogrande` | [AI-ModelScope/winogrande_val](https://modelscope.cn/datasets/AI-ModelScope/winogrande_val/summary) | 推理,指代消解 | |
|
||
|
||
```{note}
|
||
**1.** 评测需要计算logits等,暂不支持API服务评测(`eval-type != server`)。
|
||
|
||
**2.** 因为涉及到代码运行的操作,建议在沙盒环境(docker)中运行,防止对本地环境造成影响。
|
||
|
||
**3.** 该数据集需要指定Judge Model进行评测,参考[Judge参数](./parameters.md#judge参数)。
|
||
|
||
**4.** 建议reasoning模型设置对应数据集的后处理,例如`{"filters": {"remove_until": "</think>"}}`,以获得更好的评测结果。
|
||
```
|
||
|
||
### AIGC 评测集
|
||
|
||
本框架也支持文生图等AIGC相关的评测集,具体数据集如下:
|
||
|
||
| 名称 | 数据集ID | 任务类别 | 备注 |
|
||
|-------|----------------|-----------------|----------|
|
||
| `general_t2i` | | 通用文生图 | 参考教程 |
|
||
| `evalmuse` | [AI-ModelScope/T2V-Eval-Prompts](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/summary) | 图文一致性 | EvalMuse 子数据集,默认指标为`FGA_BLIP2Score` |
|
||
| `genai_bench` | [AI-ModelScope/T2V-Eval-Prompts](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/) | 图文一致性 | GenAI-Bench-1600 子数据集,默认指标为`VQAScore` |
|
||
| `hpdv2` | [AI-ModelScope/T2V-Eval-Prompts](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/) | 图文一致性 | HPDv2 子数据集,默认指标为`HPSv2.1Score` |
|
||
| `tifa160` | [AI-ModelScope/T2V-Eval-Prompts](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/) | 图文一致性 | TIFA160 子数据集,默认指标为`PickScore` |
|
||
|
||
|
||
|
||
|
||
## 2. OpenCompass评测后端支持的数据集
|
||
|
||
参考[详细说明](https://github.com/open-compass/opencompass#-dataset-support)
|
||
|
||
<table align="center">
|
||
<tbody>
|
||
<tr align="center" valign="bottom">
|
||
<td>
|
||
<b>语言</b>
|
||
</td>
|
||
<td>
|
||
<b>知识</b>
|
||
</td>
|
||
<td>
|
||
<b>推理</b>
|
||
</td>
|
||
<td>
|
||
<b>考试</b>
|
||
</td>
|
||
</tr>
|
||
<tr valign="top">
|
||
<td>
|
||
<details open>
|
||
<summary><b>字词释义</b></summary>
|
||
|
||
- WiC
|
||
- SummEdits
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>成语习语</b></summary>
|
||
|
||
- CHID
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>语义相似度</b></summary>
|
||
|
||
- AFQMC
|
||
- BUSTM
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>指代消解</b></summary>
|
||
|
||
- CLUEWSC
|
||
- WSC
|
||
- WinoGrande
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>翻译</b></summary>
|
||
|
||
- Flores
|
||
- IWSLT2017
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>多语种问答</b></summary>
|
||
|
||
- TyDi-QA
|
||
- XCOPA
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>多语种总结</b></summary>
|
||
|
||
- XLSum
|
||
|
||
</details>
|
||
</td>
|
||
<td>
|
||
<details open>
|
||
<summary><b>知识问答</b></summary>
|
||
|
||
- BoolQ
|
||
- CommonSenseQA
|
||
- NaturalQuestions
|
||
- TriviaQA
|
||
|
||
</details>
|
||
</td>
|
||
<td>
|
||
<details open>
|
||
<summary><b>文本蕴含</b></summary>
|
||
|
||
- CMNLI
|
||
- OCNLI
|
||
- OCNLI_FC
|
||
- AX-b
|
||
- AX-g
|
||
- CB
|
||
- RTE
|
||
- ANLI
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>常识推理</b></summary>
|
||
|
||
- StoryCloze
|
||
- COPA
|
||
- ReCoRD
|
||
- HellaSwag
|
||
- PIQA
|
||
- SIQA
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>数学推理</b></summary>
|
||
|
||
- MATH
|
||
- GSM8K
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>定理应用</b></summary>
|
||
|
||
- TheoremQA
|
||
- StrategyQA
|
||
- SciBench
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>综合推理</b></summary>
|
||
|
||
- BBH
|
||
|
||
</details>
|
||
</td>
|
||
<td>
|
||
<details open>
|
||
<summary><b>初中/高中/大学/职业考试</b></summary>
|
||
|
||
- C-Eval
|
||
- AGIEval
|
||
- MMLU
|
||
- GAOKAO-Bench
|
||
- CMMLU
|
||
- ARC
|
||
- Xiezhi
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>医学考试</b></summary>
|
||
|
||
- CMB
|
||
|
||
</details>
|
||
</td>
|
||
</tr>
|
||
</td>
|
||
</tr>
|
||
</tbody>
|
||
<tbody>
|
||
<tr align="center" valign="bottom">
|
||
<td>
|
||
<b>理解</b>
|
||
</td>
|
||
<td>
|
||
<b>长文本</b>
|
||
</td>
|
||
<td>
|
||
<b>安全</b>
|
||
</td>
|
||
<td>
|
||
<b>代码</b>
|
||
</td>
|
||
</tr>
|
||
<tr valign="top">
|
||
<td>
|
||
<details open>
|
||
<summary><b>阅读理解</b></summary>
|
||
|
||
- C3
|
||
- CMRC
|
||
- DRCD
|
||
- MultiRC
|
||
- RACE
|
||
- DROP
|
||
- OpenBookQA
|
||
- SQuAD2.0
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>内容总结</b></summary>
|
||
|
||
- CSL
|
||
- LCSTS
|
||
- XSum
|
||
- SummScreen
|
||
|
||
</details>
|
||
|
||
<details open>
|
||
<summary><b>内容分析</b></summary>
|
||
|
||
- EPRSTMT
|
||
- LAMBADA
|
||
- TNEWS
|
||
|
||
</details>
|
||
</td>
|
||
<td>
|
||
<details open>
|
||
<summary><b>长文本理解</b></summary>
|
||
|
||
- LEval
|
||
- LongBench
|
||
- GovReports
|
||
- NarrativeQA
|
||
- Qasper
|
||
|
||
</details>
|
||
</td>
|
||
<td>
|
||
<details open>
|
||
<summary><b>安全</b></summary>
|
||
|
||
- CivilComments
|
||
- CrowsPairs
|
||
- CValues
|
||
- JigsawMultilingual
|
||
- TruthfulQA
|
||
|
||
</details>
|
||
<details open>
|
||
<summary><b>健壮性</b></summary>
|
||
|
||
- AdvGLUE
|
||
|
||
</details>
|
||
</td>
|
||
<td>
|
||
<details open>
|
||
<summary><b>代码</b></summary>
|
||
|
||
- HumanEval
|
||
- HumanEvalX
|
||
- MBPP
|
||
- APPs
|
||
- DS1000
|
||
|
||
</details>
|
||
</td>
|
||
</tr>
|
||
</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
|
||
|
||
|
||
## 3. VLMEvalKit评测后端支持的数据集
|
||
|
||
```{note}
|
||
更完整的说明和及时更新的数据集列表,请参考[详细说明](https://aicarrier.feishu.cn/wiki/Qp7wwSzQ9iK1Y6kNUJVcr6zTnPe?table=tblsdEpLieDoCxtb)
|
||
```
|
||
|
||
### 图文多模态评测集
|
||
|
||
使用的缩写:
|
||
- `MCQ`: 单项选择题;
|
||
- `Y/N`: 正误判断题;
|
||
- `MTT`: 多轮对话评测;
|
||
- `MTI`: 多图输入评测
|
||
|
||
| 数据集 | 名称 | 任务 |
|
||
|-------------------------------------------------------------|--------------------------------------------------------|--------------------------|
|
||
| [**MMBench Series**](https://github.com/open-compass/mmbench/): <br>MMBench, MMBench-CN, CCBench | MMBench\_DEV\_[EN/CN] <br>MMBench\_TEST\_[EN/CN]<br>MMBench\_DEV\_[EN/CN]\_V11<br>MMBench\_TEST\_[EN/CN]\_V11<br>CCBench | MCQ |
|
||
| [**MMStar**](https://github.com/MMStar-Benchmark/MMStar) | MMStar | MCQ |
|
||
| [**MME**](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation) | MME | Y/N |
|
||
| [**SEEDBench Series**](https://github.com/AILab-CVC/SEED-Bench) | SEEDBench_IMG <br>SEEDBench2 <br>SEEDBench2_Plus | MCQ |
|
||
| [**MM-Vet**](https://github.com/yuweihao/MM-Vet) | MMVet | VQA |
|
||
| [**MMMU**](https://mmmu-benchmark.github.io) | MMMU\_[DEV_VAL/TEST] | MCQ |
|
||
| [**MathVista**](https://mathvista.github.io) | MathVista_MINI | VQA |
|
||
| [**ScienceQA_IMG**](https://scienceqa.github.io) | ScienceQA\_[VAL/TEST] | MCQ |
|
||
| [**COCO Caption**](https://cocodataset.org) | COCO_VAL | Caption |
|
||
| [**HallusionBench**](https://github.com/tianyi-lab/HallusionBench) | HallusionBench | Y/N |
|
||
| [**OCRVQA**](https://ocr-vqa.github.io)* | OCRVQA\_[TESTCORE/TEST] | VQA |
|
||
| [**TextVQA**](https://textvqa.org)* | TextVQA_VAL | VQA |
|
||
| [**ChartQA**](https://github.com/vis-nlp/ChartQA)* | ChartQA_TEST | VQA |
|
||
| [**AI2D**](https://allenai.org/data/diagrams) | AI2D\_[TEST/TEST_NO_MASK] | MCQ |
|
||
| [**LLaVABench**](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) | LLaVABench | VQA |
|
||
| [**DocVQA**](https://www.docvqa.org)+ | DocVQA\_[VAL/TEST] | VQA |
|
||
| [**InfoVQA**](https://www.docvqa.org/datasets/infographicvqa)+ | InfoVQA\_[VAL/TEST] | VQA |
|
||
| [**OCRBench**](https://github.com/Yuliang-Liu/MultimodalOCR) | OCRBench | VQA |
|
||
| [**RealWorldQA**](https://x.ai/blog/grok-1.5v) | RealWorldQA | MCQ |
|
||
| [**POPE**](https://github.com/AoiDragon/POPE) | POPE | Y/N |
|
||
| [**Core-MM**](https://github.com/core-mm/core-mm)- | CORE_MM (MTI) | VQA |
|
||
| [**MMT-Bench**](https://mmt-bench.github.io) | MMT-Bench\_[VAL/ALL]<br>MMT-Bench\_[VAL/ALL]\_MI | MCQ (MTI) |
|
||
| [**MLLMGuard**](https://github.com/Carol-gutianle/MLLMGuard) - | MLLMGuard_DS | VQA |
|
||
| [**AesBench**](https://github.com/yipoh/AesBench)+ | AesBench\_[VAL/TEST] | MCQ |
|
||
| [**VCR-wiki**](https://huggingface.co/vcr-org/) + | VCR\_[EN/ZH]\_[EASY/HARD]_[ALL/500/100] | VQA |
|
||
| [**MMLongBench-Doc**](https://mayubo2333.github.io/MMLongBench-Doc/)+ | MMLongBench_DOC | VQA (MTI) |
|
||
| [**BLINK**](https://zeyofu.github.io/blink/) | BLINK | MCQ (MTI) |
|
||
| [**MathVision**](https://mathvision-cuhk.github.io)+ | MathVision<br>MathVision_MINI | VQA |
|
||
| [**MT-VQA**](https://github.com/bytedance/MTVQA)+ | MTVQA_TEST | VQA |
|
||
| [**MMDU**](https://liuziyu77.github.io/MMDU/)+ | MMDU | VQA (MTT, MTI) |
|
||
| [**Q-Bench1**](https://github.com/Q-Future/Q-Bench)+ | Q-Bench1\_[VAL/TEST] | MCQ |
|
||
| [**A-Bench**](https://github.com/Q-Future/A-Bench)+ | A-Bench\_[VAL/TEST] | MCQ |
|
||
| [**DUDE**](https://arxiv.org/abs/2305.08455)+ | DUDE | VQA (MTI) |
|
||
| [**SlideVQA**](https://arxiv.org/abs/2301.04883)+ | SLIDEVQA<br>SLIDEVQA_MINI | VQA (MTI) |
|
||
| [**TaskMeAnything ImageQA Random**](https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-random)+ | TaskMeAnything_v1_imageqa_random | MCQ |
|
||
| [**MMMB and Multilingual MMBench**](https://sun-hailong.github.io/projects/Parrot/)+ | MMMB\_[ar/cn/en/pt/ru/tr]<br>MMBench_dev\_[ar/cn/en/pt/ru/tr]<br>MMMB<br>MTL_MMBench_DEV<br>PS: MMMB & MTL_MMBench_DEV <br>are **all-in-one** names for 6 langs | MCQ |
|
||
| [**A-OKVQA**](https://arxiv.org/abs/2206.01718)+ | A-OKVQA | MCQ |
|
||
| [**MuirBench**](https://muirbench.github.io) | MUIRBench | MCQ |
|
||
| [**GMAI-MMBench**](https://huggingface.co/papers/2408.03361)+ | GMAI-MMBench\_VAL | MCQ |
|
||
| [**TableVQABench**](https://arxiv.org/abs/2404.19205)+ | TableVQABench | VQA |
|
||
|
||
```{note}
|
||
**\*** 只提供了部分模型上的[测试结果](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard),剩余模型无法在 zero-shot 设定下测试出合理的精度
|
||
|
||
**\+** 尚未提供这个评测集的测试结果
|
||
|
||
**\-** VLMEvalKit 仅支持这个评测集的推理,无法输出最终精度
|
||
```
|
||
|
||
### 视频多模态评测集
|
||
|
||
| 数据集 | 数据集名称 | 任务 |
|
||
| ---------------------------------------------------- | -------------------------- | ---- |
|
||
| [**MMBench-Video**](https://mmbench-video.github.io) | MMBench-Video | VQA |
|
||
| [**MVBench**](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/MVBENCH.md) | MVBench_MP4 | MCQ |
|
||
| [**MLVU**](https://github.com/JUNJIE99/MLVU) | MLVU | MCQ & VQA |
|
||
| [**TempCompass**](https://arxiv.org/abs/2403.00476) | TempCompass | MCQ & Y/N & Caption |
|
||
| [**LongVideoBench**](https://longvideobench.github.io/) | LongVideoBench | MCQ |
|
||
| [**Video-MME**](https://video-mme.github.io/) | Video-MME | MCQ |
|
||
|
||
## 4. RAGEval评测后端支持的数据集
|
||
|
||
### CMTEB 评测数据集
|
||
| 名称 | Hub链接 | 描述 | 类型 | 类别 | 测试样本数量 |
|
||
|-----|-----|---------------------------|-----|-----|-----|
|
||
| [T2Retrieval](https://arxiv.org/abs/2304.03679) | [C-MTEB/T2Retrieval](https://modelscope.cn/datasets/C-MTEB/T2Retrieval) | T2Ranking:一个大规模的中文段落排序基准 | 检索 | s2p | 24,832 |
|
||
| [MMarcoRetrieval](https://github.com/unicamp-dl/mMARCO) | [C-MTEB/MMarcoRetrieval](https://modelscope.cn/datasets/C-MTEB/MMarcoRetrieval) | mMARCO是MS MARCO段落排序数据集的多语言版本 | 检索 | s2p | 7,437 |
|
||
| [DuRetrieval](https://aclanthology.org/2022.emnlp-main.357.pdf) | [C-MTEB/DuRetrieval](https://modelscope.cn/datasets/C-MTEB/DuRetrieval) | 一个大规模的中文网页搜索引擎段落检索基准 | 检索 | s2p | 4,000 |
|
||
| [CovidRetrieval](https://aclanthology.org/2022.emnlp-main.357.pdf) | [C-MTEB/CovidRetrieval](https://modelscope.cn/datasets/C-MTEB/CovidRetrieval) | COVID-19新闻文章 | 检索 | s2p | 949 |
|
||
| [CmedqaRetrieval](https://aclanthology.org/2022.emnlp-main.357.pdf) | [C-MTEB/CmedqaRetrieval](https://modelscope.cn/datasets/C-MTEB/CmedqaRetrieval) | 在线医疗咨询文本 | 检索 | s2p | 3,999 |
|
||
| [EcomRetrieval](https://arxiv.org/abs/2203.03367) | [C-MTEB/EcomRetrieval](https://modelscope.cn/datasets/C-MTEB/EcomRetrieval) | 从阿里巴巴电商领域搜索引擎系统收集的段落检索数据集 | 检索 | s2p | 1,000 |
|
||
| [MedicalRetrieval](https://arxiv.org/abs/2203.03367) | [C-MTEB/MedicalRetrieval](https://modelscope.cn/datasets/C-MTEB/MedicalRetrieval) | 从阿里巴巴医疗领域搜索引擎系统收集的段落检索数据集 | 检索 | s2p | 1,000 |
|
||
| [VideoRetrieval](https://arxiv.org/abs/2203.03367) | [C-MTEB/VideoRetrieval](https://modelscope.cn/datasets/C-MTEB/VideoRetrieval) | 从阿里巴巴视频领域搜索引擎系统收集的段落检索数据集 | 检索 | s2p | 1,000 |
|
||
| [T2Reranking](https://arxiv.org/abs/2304.03679) | [C-MTEB/T2Reranking](https://modelscope.cn/datasets/C-MTEB/T2Reranking) | T2Ranking:一个大规模的中文段落排序基准 | 重新排序 | s2p | 24,382 |
|
||
| [MMarcoReranking](https://github.com/unicamp-dl/mMARCO) | [C-MTEB/MMarco-reranking](https://modelscope.cn/datasets/C-MTEB/Mmarco-reranking) | mMARCO是MS MARCO段落排序数据集的多语言版本 | 重新排序 | s2p | 7,437 |
|
||
| [CMedQAv1](https://github.com/zhangsheng93/cMedQA) | [C-MTEB/CMedQAv1-reranking](https://modelscope.cn/datasets/C-MTEB/CMedQAv1-reranking) | 中文社区医疗问答 | 重新排序 | s2p | 2,000 |
|
||
| [CMedQAv2](https://github.com/zhangsheng93/cMedQA2) | [C-MTEB/CMedQAv2-reranking](https://modelscope.cn/datasets/C-MTEB/C-MTEB/CMedQAv2-reranking) | 中文社区医疗问答 | 重新排序 | s2p | 4,000 |
|
||
| [Ocnli](https://arxiv.org/abs/2010.05444) | [C-MTEB/OCNLI](https://modelscope.cn/datasets/C-MTEB/OCNLI) | 原始中文自然语言推理数据集 | 配对分类 | s2s | 3,000 |
|
||
| [Cmnli](https://modelscope.cn/datasets/clue/viewer/cmnli) | [C-MTEB/CMNLI](https://modelscope.cn/datasets/C-MTEB/CMNLI) | 中文多类别自然语言推理 | 配对分类 | s2s | 139,000 |
|
||
| [CLSClusteringS2S](https://arxiv.org/abs/2209.05034) | [C-MTEB/CLSClusteringS2S](https://modelscope.cn/datasets/C-MTEB/C-MTEB/CLSClusteringS2S) | 从CLS数据集中聚类标题。基于主要类别的13个集合的聚类。 | 聚类 | s2s | 10,000 |
|
||
| [CLSClusteringP2P](https://arxiv.org/abs/2209.05034) | [C-MTEB/CLSClusteringP2P](https://modelscope.cn/datasets/C-MTEB/CLSClusteringP2P) | 从CLS数据集中聚类标题+摘要。基于主要类别的13个集合的聚类。 | 聚类 | p2p | 10,000 |
|
||
| [ThuNewsClusteringS2S](http://thuctc.thunlp.org/) | [C-MTEB/ThuNewsClusteringS2S](https://modelscope.cn/datasets/C-MTEB/ThuNewsClusteringS2S) | 从THUCNews数据集中聚类标题 | 聚类 | s2s | 10,000 |
|
||
| [ThuNewsClusteringP2P](http://thuctc.thunlp.org/) | [C-MTEB/ThuNewsClusteringP2P](https://modelscope.cn/datasets/C-MTEB/ThuNewsClusteringP2P) | 从THUCNews数据集中聚类标题+摘要 | 聚类 | p2p | 10,000 |
|
||
| [ATEC](https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC) | [C-MTEB/ATEC](https://modelscope.cn/datasets/C-MTEB/ATEC) | ATEC NLP句子对相似性竞赛 | STS | s2s | 20,000 |
|
||
| [BQ](https://huggingface.co/datasets/shibing624/nli_zh) | [C-MTEB/BQ](https://modelscope.cn/datasets/C-MTEB/BQ) | 银行问题语义相似性 | STS | s2s | 10,000 |
|
||
| [LCQMC](https://huggingface.co/datasets/shibing624/nli_zh) | [C-MTEB/LCQMC](https://modelscope.cn/datasets/C-MTEB/LCQMC) | 大规模中文问题匹配语料库 | STS | s2s | 12,500 |
|
||
| [PAWSX](https://arxiv.org/pdf/1908.11828.pdf) | [C-MTEB/PAWSX](https://modelscope.cn/datasets/C-MTEB/PAWSX) | 翻译的PAWS评测对 | STS | s2s | 2,000 |
|
||
| [STSB](https://github.com/pluto-junzeng/CNSD) | [C-MTEB/STSB](https://modelscope.cn/datasets/C-MTEB/STSB) | 将STS-B翻译成中文 | STS | s2s | 1,360 |
|
||
| [AFQMC](https://github.com/CLUEbenchmark/CLUE) | [C-MTEB/AFQMC](https://modelscope.cn/datasets/C-MTEB/AFQMC) | 蚂蚁金服问答匹配语料库 | STS | s2s | 3,861 |
|
||
| [QBQTC](https://github.com/CLUEbenchmark/QBQTC) | [C-MTEB/QBQTC](https://modelscope.cn/datasets/C-MTEB/QBQTC) | QQ浏览器查询标题语料库 | STS | s2s | 5,000 |
|
||
| [TNews](https://github.com/CLUEbenchmark/CLUE) | [C-MTEB/TNews-classification](https://modelscope.cn/datasets/C-MTEB/TNews-classification) | 新闻短文本分类 | 分类 | s2s | 10,000 |
|
||
| [IFlyTek](https://github.com/CLUEbenchmark/CLUE) | [C-MTEB/IFlyTek-classification](https://modelscope.cn/datasets/C-MTEB/IFlyTek-classification) | 应用描述的长文本分类 | 分类 | s2s | 2,600 |
|
||
| [Waimai](https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/waimai_10k/intro.ipynb) | [C-MTEB/waimai-classification](https://modelscope.cn/datasets/C-MTEB/waimai-classification) | 外卖平台用户评论的情感分析 | 分类 | s2s | 1,000 |
|
||
| [OnlineShopping](https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/online_shopping_10_cats/intro.ipynb) | [C-MTEB/OnlineShopping-classification](https://modelscope.cn/datasets/C-MTEB/OnlineShopping-classification) | 在线购物网站用户评论的情感分析 | 分类 | s2s | 1,000 |
|
||
| [MultilingualSentiment](https://github.com/tyqiangz/multilingual-sentiment-datasets) | [C-MTEB/MultilingualSentiment-classification](https://modelscope.cn/datasets/C-MTEB/MultilingualSentiment-classification) | 一组按三类分组的多语言情感数据集--正面、中立、负面 | 分类 | s2s | 3,000 |
|
||
| [JDReview](https://huggingface.co/datasets/kuroneko5943/jd21) | [C-MTEB/JDReview-classification](https://modelscope.cn/datasets/C-MTEB/JDReview-classification) | iPhone的评论 | 分类 | s2s | 533 |
|
||
|
||
对于检索任务,从整个语料库中抽样100,000个候选项(包括真实值),以降低推理成本。
|
||
|
||
### MTEB 评测数据集
|
||
```{seealso}
|
||
参考:[MTEB相关任务](https://github.com/embeddings-benchmark/mteb/blob/main/docs/tasks.md)
|
||
```
|
||
|
||
### CLIP-Benchmark
|
||
|
||
| 数据集名称 | 任务类型 | 备注 |
|
||
|--------------------------------------------------------------------------------------------------------------|--------------------|------|
|
||
| [muge](https://modelscope.cn/datasets/clip-benchmark/muge/) | zeroshot_retrieval | 中文多模态图文数据集 |
|
||
| [flickr30k](https://modelscope.cn/datasets/clip-benchmark/flickr30k/) | zeroshot_retrieval | |
|
||
| [flickr8k](https://modelscope.cn/datasets/clip-benchmark/flickr8k/) | zeroshot_retrieval | |
|
||
| [mscoco_captions](https://modelscope.cn/datasets/clip-benchmark/mscoco_captions/) | zeroshot_retrieval | |
|
||
| [mscoco_captions2017](https://modelscope.cn/datasets/clip-benchmark/mscoco_captions2017/) | zeroshot_retrieval | |
|
||
| [imagenet1k](https://modelscope.cn/datasets/clip-benchmark/imagenet1k/) | zeroshot_classification | |
|
||
| [imagenetv2](https://modelscope.cn/datasets/clip-benchmark/imagenetv2/) | zeroshot_classification | |
|
||
| [imagenet_sketch](https://modelscope.cn/datasets/clip-benchmark/imagenet_sketch/) | zeroshot_classification | |
|
||
| [imagenet-a](https://modelscope.cn/datasets/clip-benchmark/imagenet-a/) | zeroshot_classification | |
|
||
| [imagenet-r](https://modelscope.cn/datasets/clip-benchmark/imagenet-r/) | zeroshot_classification | |
|
||
| [imagenet-o](https://modelscope.cn/datasets/clip-benchmark/imagenet-o/) | zeroshot_classification | |
|
||
| [objectnet](https://modelscope.cn/datasets/clip-benchmark/objectnet/) | zeroshot_classification | |
|
||
| [fer2013](https://modelscope.cn/datasets/clip-benchmark/fer2013/) | zeroshot_classification | |
|
||
| [voc2007](https://modelscope.cn/datasets/clip-benchmark/voc2007/) | zeroshot_classification | |
|
||
| [voc2007_multilabel](https://modelscope.cn/datasets/clip-benchmark/voc2007_multilabel/) | zeroshot_classification | |
|
||
| [sun397](https://modelscope.cn/datasets/clip-benchmark/sun397/) | zeroshot_classification | |
|
||
| [cars](https://modelscope.cn/datasets/clip-benchmark/cars/) | zeroshot_classification | |
|
||
| [fgvc_aircraft](https://modelscope.cn/datasets/clip-benchmark/fgvc_aircraft/) | zeroshot_classification | |
|
||
| [mnist](https://modelscope.cn/datasets/clip-benchmark/mnist/) | zeroshot_classification | |
|
||
| [stl10](https://modelscope.cn/datasets/clip-benchmark/stl10/) | zeroshot_classification | |
|
||
| [gtsrb](https://modelscope.cn/datasets/clip-benchmark/gtsrb/) | zeroshot_classification | |
|
||
| [country211](https://modelscope.cn/datasets/clip-benchmark/country211/) | zeroshot_classification | |
|
||
| [renderedsst2](https://modelscope.cn/datasets/clip-benchmark/renderedsst2/) | zeroshot_classification | |
|
||
| [vtab_caltech101](https://modelscope.cn/datasets/clip-benchmark/vtab_caltech101/) | zeroshot_classification | |
|
||
| [vtab_cifar10](https://modelscope.cn/datasets/clip-benchmark/vtab_cifar10/) | zeroshot_classification | |
|
||
| [vtab_cifar100](https://modelscope.cn/datasets/clip-benchmark/vtab_cifar100/) | zeroshot_classification | |
|
||
| [vtab_clevr_count_all](https://modelscope.cn/datasets/clip-benchmark/vtab_clevr_count_all/) | zeroshot_classification | |
|
||
| [vtab_clevr_closest_object_distance](https://modelscope.cn/datasets/clip-benchmark/vtab_clevr_closest_object_distance/) | zeroshot_classification | |
|
||
| [vtab_diabetic_retinopathy](https://modelscope.cn/datasets/clip-benchmark/vtab_diabetic_retinopathy/) | zeroshot_classification | |
|
||
| [vtab_dmlab](https://modelscope.cn/datasets/clip-benchmark/vtab_dmlab/) | zeroshot_classification | |
|
||
| [vtab_dsprites_label_orientation](https://modelscope.cn/datasets/clip-benchmark/vtab_dsprites_label_orientation/) | zeroshot_classification | |
|
||
| [vtab_dsprites_label_x_position](https://modelscope.cn/datasets/clip-benchmark/vtab_dsprites_label_x_position/) | zeroshot_classification | |
|
||
| [vtab_dsprites_label_y_position](https://modelscope.cn/datasets/clip-benchmark/vtab_dsprites_label_y_position/) | zeroshot_classification | |
|
||
| [vtab_dtd](https://modelscope.cn/datasets/clip-benchmark/vtab_dtd/) | zeroshot_classification | |
|
||
| [vtab_eurosat](https://modelscope.cn/datasets/clip-benchmark/vtab_eurosat/) | zeroshot_classification | |
|
||
| [vtab_kitti_closest_vehicle_distance](https://modelscope.cn/datasets/clip-benchmark/vtab_kitti_closest_vehicle_distance/) | zeroshot_classification | |
|
||
| [vtab_flowers](https://modelscope.cn/datasets/clip-benchmark/vtab_flowers/) | zeroshot_classification | |
|
||
| [vtab_pets](https://modelscope.cn/datasets/clip-benchmark/vtab_pets/) | zeroshot_classification | |
|
||
| [vtab_pcam](https://modelscope.cn/datasets/clip-benchmark/vtab_pcam/) | zeroshot_classification | |
|
||
| [vtab_resisc45](https://modelscope.cn/datasets/clip-benchmark/vtab_resisc45/) | zeroshot_classification | |
|
||
| [vtab_smallnorb_label_azimuth](https://modelscope.cn/datasets/clip-benchmark/vtab_smallnorb_label_azimuth/) | zeroshot_classification | |
|
||
| [vtab_smallnorb_label_elevation](https://modelscope.cn/datasets/clip-benchmark/vtab_smallnorb_label_elevation/) | zeroshot_classification | |
|
||
| [vtab_svhn](https://modelscope.cn/datasets/clip-benchmark/vtab_svhn/) | zeroshot_classification | |
|