evalscope/docs/zh/user_guides/backend/rageval_backend/mteb.md

30 KiB
Raw Permalink Blame History

(mteb)=

MTEB

本框架支持 MTEBCMTEB,具体介绍如下:

  • MTEBMassive Text Embedding Benchmark是一个大规模的基准测试旨在衡量文本嵌入模型在多样化嵌入任务上的性能。MTEB 包括56个数据集涵盖8个任务并且支持超过112种不同的语言。这个基准测试的目标是帮助开发者找到适用于多种任务的最佳文本嵌入模型。

  • CMTEBChinese Massive Text Embedding Benchmark是一个专门针对中文文本向量的评测基准它基于MTEB构建旨在评测中文文本向量模型的性能。CMTEB收集了35个公共数据集并分为6类评测任务包括检索retrieval、重排序reranking、语义文本相似度STS、分类classification、对分类pair classification和聚类clustering

支持的数据集

名称 Hub链接 描述 类型 类别 测试样本数量
T2Retrieval C-MTEB/T2Retrieval T2Ranking一个大规模的中文段落排序基准 检索 s2p 24,832
MMarcoRetrieval C-MTEB/MMarcoRetrieval mMARCO是MS MARCO段落排序数据集的多语言版本 检索 s2p 7,437
DuRetrieval C-MTEB/DuRetrieval 一个大规模的中文网页搜索引擎段落检索基准 检索 s2p 4,000
CovidRetrieval C-MTEB/CovidRetrieval COVID-19新闻文章 检索 s2p 949
CmedqaRetrieval C-MTEB/CmedqaRetrieval 在线医疗咨询文本 检索 s2p 3,999
EcomRetrieval C-MTEB/EcomRetrieval 从阿里巴巴电商领域搜索引擎系统收集的段落检索数据集 检索 s2p 1,000
MedicalRetrieval C-MTEB/MedicalRetrieval 从阿里巴巴医疗领域搜索引擎系统收集的段落检索数据集 检索 s2p 1,000
VideoRetrieval C-MTEB/VideoRetrieval 从阿里巴巴视频领域搜索引擎系统收集的段落检索数据集 检索 s2p 1,000
T2Reranking C-MTEB/T2Reranking T2Ranking一个大规模的中文段落排序基准 重新排序 s2p 24,382
MMarcoReranking C-MTEB/MMarco-reranking mMARCO是MS MARCO段落排序数据集的多语言版本 重新排序 s2p 7,437
CMedQAv1 C-MTEB/CMedQAv1-reranking 中文社区医疗问答 重新排序 s2p 2,000
CMedQAv2 C-MTEB/CMedQAv2-reranking 中文社区医疗问答 重新排序 s2p 4,000
Ocnli C-MTEB/OCNLI 原始中文自然语言推理数据集 配对分类 s2s 3,000
Cmnli C-MTEB/CMNLI 中文多类别自然语言推理 配对分类 s2s 139,000
CLSClusteringS2S C-MTEB/CLSClusteringS2S 从CLS数据集中聚类标题。基于主要类别的13个集合的聚类。 聚类 s2s 10,000
CLSClusteringP2P C-MTEB/CLSClusteringP2P 从CLS数据集中聚类标题+摘要。基于主要类别的13个集合的聚类。 聚类 p2p 10,000
ThuNewsClusteringS2S C-MTEB/ThuNewsClusteringS2S 从THUCNews数据集中聚类标题 聚类 s2s 10,000
ThuNewsClusteringP2P C-MTEB/ThuNewsClusteringP2P 从THUCNews数据集中聚类标题+摘要 聚类 p2p 10,000
ATEC C-MTEB/ATEC ATEC NLP句子对相似性竞赛 STS s2s 20,000
BQ C-MTEB/BQ 银行问题语义相似性 STS s2s 10,000
LCQMC C-MTEB/LCQMC 大规模中文问题匹配语料库 STS s2s 12,500
PAWSX C-MTEB/PAWSX 翻译的PAWS评测对 STS s2s 2,000
STSB C-MTEB/STSB 将STS-B翻译成中文 STS s2s 1,360
AFQMC C-MTEB/AFQMC 蚂蚁金服问答匹配语料库 STS s2s 3,861
QBQTC C-MTEB/QBQTC QQ浏览器查询标题语料库 STS s2s 5,000
TNews C-MTEB/TNews-classification 新闻短文本分类 分类 s2s 10,000
IFlyTek C-MTEB/IFlyTek-classification 应用描述的长文本分类 分类 s2s 2,600
Waimai C-MTEB/waimai-classification 外卖平台用户评论的情感分析 分类 s2s 1,000
OnlineShopping C-MTEB/OnlineShopping-classification 在线购物网站用户评论的情感分析 分类 s2s 1,000
MultilingualSentiment C-MTEB/MultilingualSentiment-classification 一组按三类分组的多语言情感数据集--正面、中立、负面 分类 s2s 3,000
JDReview C-MTEB/JDReview-classification iPhone的评论 分类 s2s 533

对于检索任务从整个语料库中抽样100,000个候选项包括真实值以降低推理成本。

- [CMTEB支持的数据集](https://github.com/FlagOpen/FlagEmbedding/blob/master/research/C_MTEB/README.md) 
- [MTEB支持的数据集](https://github.com/embeddings-benchmark/mteb/blob/main/docs/tasks.md)

环境准备

安装依赖包

pip install evalscope[rag] -U

配置评测参数

框架支持两种评测方式:单阶段评测 和 两阶段评测:

  • 单阶段评测直接使用模型预测并计算指标支持embedding模型的检索、重排序、分类等任务。
  • 两阶段评测使用模型检索再使用模型进行重排序并计算指标支持reranking模型。

单阶段评测

配置文件示例如下:

one_stage_task_cfg = {
    "work_dir": "outputs",
    "eval_backend": "RAGEval",
    "eval_config": {
        "tool": "MTEB",
        "model": [
            {
                "model_name_or_path": "AI-ModelScope/m3e-base",
                "pooling_mode": None,
                "max_seq_length": 512,
                "prompt": "",
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 128,
                },
            }
        ],
        "eval": {
            "tasks": [
                "TNews",
                "CLSClusteringS2S",
                "T2Reranking",
                "T2Retrieval",
                "ATEC",
            ],
            "verbosity": 2,
            "overwrite_results": True,
            "top_k": 10,
            "limits": 500,
        },
    },
}

API模型服务评测

使用远程API模型服务时配置文件示例如下

from evalscope import TaskConfig
task_cfg = TaskConfig(
    eval_backend='RAGEval',
    eval_config={
        'tool': 'MTEB',
        'model': [
            {
                'model_name': 'text-embedding-v3',
                'api_base': 'https://dashscope.aliyuncs.com/compatible-mode/v1',
                'api_key': env.get('DASHSCOPE_API_KEY', 'EMPTY'),
                'dimensions': 1024,
                'encode_kwargs': {
                    'batch_size': 10,
                },
            }
        ],
        'eval': {
            'tasks': [
                'T2Retrieval',
            ],
            'verbosity': 2,
            'overwrite_results': True,
            'limits': 30,
        },
    },
)

两阶段评测

评测reranker需要用retrieval数据集先用embedding模型检索topk再进行排序。配置文件示例如下

two_stage_task_cfg = {
    "work_dir": "outputs",
    "eval_backend": "RAGEval",
    "eval_config": {
        "tool": "MTEB",
        "model": [
            {
                "model_name_or_path": "AI-ModelScope/m3e-base",
                "is_cross_encoder": False,
                "max_seq_length": 512,
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 64,
                },
            },
            {
                "model_name_or_path": "OpenBMB/MiniCPM-Reranker",
                "is_cross_encoder": True,
                "max_seq_length": 512,
                "prompt": "为这个问题生成一个检索用的表示",
                "model_kwargs": {"torch_dtype": "auto"},
                "encode_kwargs": {
                    "batch_size": 32,
                },
            },
        ],
        "eval": {
            "tasks": ["T2Retrieval"],
            "verbosity": 2,
            "overwrite_results": True,
            "top_k": 5,
            "limits": 100,
        },
    },
}

参数说明

  • eval_backend:默认值为 RAGEval,表示使用 RAGEval 评测后端。
  • eval_config:字典,包含以下字段:
    • tool:评测工具,使用 MTEB
    • model 模型配置列表,单阶段评测时只能放置一个模型两阶段评测传入两个模型第一个模型用于检索第二个模型用于reranking,包含以下字段:
      • 对于本地加载的模型支持
        • model_name_or_path: str 模型名称或路径支持从modelscope仓库自动下载模型。
        • is_cross_encoder: bool 模型是否为交叉编码器,默认为 Falsereranking模型需设置为True
        • pooling_mode: Optional[str] 池化模式,默认为mean可选值为“cls”、“lasttoken”、“max”、“mean”、“mean_sqrt_len_tokens”或“weightedmean”。bge系列模型请设置为“cls”。
        • max_seq_length: int 最大序列长度,默认为 512。
        • prompt: str 用于检索任务在模型前的提示,默认为空字符串。
        • model_kwargs: dict 模型的关键字参数,默认值为 {"torch_dtype": "auto"}
        • config_kwargs: Dict[str, Any] 配置的关键字参数,默认为空字典。
        • encode_kwargs: dict 编码的关键字参数,默认值为:
          {  
              "show_progress_bar": True,  
              "batch_size": 32
          }  
          
        • hub: str 模型来源,可以是 "modelscope" 或 "huggingface"。
      • 对于远程API模型服务支持
        • model_name: str 模型名称。
        • api_base: str 模型API服务地址。
        • api_key: str 模型API密钥。
        • dimension: int 模型输出维度。
        • encode_kwargs: dict 编码的关键字参数,默认值为:
          {  
              "batch_size": 10
          }  
          
    • eval:字典,包含以下字段:
      • tasks: List[str] 任务名称,参见任务列表
      • top_k: int 选取前 K 个结果,检索任务使用
      • verbosity: int 详细程度,范围为 0-3
      • overwrite_results: bool 是否覆盖结果,默认为 True
      • limits: Optional[int] 限制样本数量,默认为 None检索任务不建议设置
      • hub: str 数据集来源,可以是 "modelscope" 或 "huggingface"

模型评测

from evalscope.run import run_task

# Run task
run_task(task_cfg=one_stage_task_cfg) 
# or 
# run_task(task_cfg=two_stage_task_cfg)

输出结果如下:

单阶段评测

输出:
:caption: outputs/m3e-base/master/TNews.json

{
  "dataset_revision": "317f262bf1e6126357bbe89e875451e4b0938fe4",
  "evaluation_time": 16.50650382041931,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "validation": [
      {
        "accuracy": 0.4744,
        "f1": 0.44562489526640825,
        "f1_weighted": 0.47540307398330806,
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.4744,
        "scores_per_experiment": [
          {
            "accuracy": 0.48,
            "f1": 0.4536376605217497,
            "f1_weighted": 0.47800277926811163
          },
          {
            "accuracy": 0.48,
            "f1": 0.44713633954639176,
            "f1_weighted": 0.4826984434763292
          },
          {
            "accuracy": 0.462,
            "f1": 0.433365706955334,
            "f1_weighted": 0.4640970055245127
          },
          {
            "accuracy": 0.484,
            "f1": 0.4586732839614161,
            "f1_weighted": 0.4857359110392786
          },
          {
            "accuracy": 0.462,
            "f1": 0.4293797541165097,
            "f1_weighted": 0.4632657330831137
          },
          {
            "accuracy": 0.474,
            "f1": 0.44775120246296396,
            "f1_weighted": 0.4737182842092953
          },
          {
            "accuracy": 0.47,
            "f1": 0.4431197566080463,
            "f1_weighted": 0.4714830140231783
          },
          {
            "accuracy": 0.472,
            "f1": 0.44322381694059326,
            "f1_weighted": 0.47100005556357255
          },
          {
            "accuracy": 0.484,
            "f1": 0.45454749692062835,
            "f1_weighted": 0.4856239367465818
          },
          {
            "accuracy": 0.476,
            "f1": 0.44541393463044954,
            "f1_weighted": 0.47840557689910646
          }
        ]
      }
    ]
  },
  "task_name": "TNews"
}

两阶段评测

阶段一
:caption: outputs/stage1/m3e-base/v1/T2Retrieval.json

{
  "dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
  "evaluation_time": 599.5170171260834,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "dev": [
      {
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.73143,
        "map_at_1": 0.22347,
        "map_at_10": 0.63237,
        "map_at_100": 0.67533,
        "map_at_1000": 0.67651,
        "map_at_20": 0.66282,
        "map_at_3": 0.43874,
        "map_at_5": 0.54049,
        "mrr_at_1": 0.7898912852884447,
        "mrr_at_10": 0.8402654617870331,
        "mrr_at_100": 0.8421827758769684,
        "mrr_at_1000": 0.8422583001072272,
        "mrr_at_20": 0.8415411456315557,
        "mrr_at_3": 0.8307469752761716,
        "mrr_at_5": 0.8368029984218875,
        "nauc_map_at_1000_diff1": 0.17749400860890877,
        "nauc_map_at_1000_max": 0.42844516520725967,
        "nauc_map_at_1000_std": 0.18789871694419072,
        "nauc_map_at_100_diff1": 0.17747467084779375,
        "nauc_map_at_100_max": 0.42732291785494575,
        "nauc_map_at_100_std": 0.18694287087286737,
        "nauc_map_at_10_diff1": 0.19976199493034202,
        "nauc_map_at_10_max": 0.3374436217668296,
        "nauc_map_at_10_std": 0.07951451707732717,
        "nauc_map_at_1_diff1": 0.41727578149080663,
        "nauc_map_at_1_max": -0.1402656422184478,
        "nauc_map_at_1_std": -0.26168722519030313,
        "nauc_map_at_20_diff1": 0.1811898211371171,
        "nauc_map_at_20_max": 0.40563441466210043,
        "nauc_map_at_20_std": 0.15927727170010608,
        "nauc_map_at_3_diff1": 0.31255422845809033,
        "nauc_map_at_3_max": 0.007523677231905161,
        "nauc_map_at_3_std": -0.19578481884353466,
        "nauc_map_at_5_diff1": 0.26073699217160473,
        "nauc_map_at_5_max": 0.14665611579604088,
        "nauc_map_at_5_std": -0.09600383298672226,
        "nauc_mrr_at_1000_diff1": 0.3819666309367981,
        "nauc_mrr_at_1000_max": 0.6285393024619401,
        "nauc_mrr_at_1000_std": 0.3294970299417527,
        "nauc_mrr_at_100_diff1": 0.3819436006743644,
        "nauc_mrr_at_100_max": 0.6286346262471935,
        "nauc_mrr_at_100_std": 0.32963045935037844,
        "nauc_mrr_at_10_diff1": 0.3819124721154632,
        "nauc_mrr_at_10_max": 0.6292778905762176,
        "nauc_mrr_at_10_std": 0.3298187966196067,
        "nauc_mrr_at_1_diff1": 0.3862589251033909,
        "nauc_mrr_at_1_max": 0.589976680174432,
        "nauc_mrr_at_1_std": 0.2780515387897469,
        "nauc_mrr_at_20_diff1": 0.38198959771391816,
        "nauc_mrr_at_20_max": 0.6290569436652999,
        "nauc_mrr_at_20_std": 0.3301570340189363,
        "nauc_mrr_at_3_diff1": 0.3825046940733129,
        "nauc_mrr_at_3_max": 0.6282507269128365,
        "nauc_mrr_at_3_std": 0.3260807934869131,
        "nauc_mrr_at_5_diff1": 0.3816317396711923,
        "nauc_mrr_at_5_max": 0.6288655177904692,
        "nauc_mrr_at_5_std": 0.3298854062538469,
        "nauc_ndcg_at_1000_diff1": 0.21319598381916555,
        "nauc_ndcg_at_1000_max": 0.5328295949130256,
        "nauc_ndcg_at_1000_std": 0.2946773445135694,
        "nauc_ndcg_at_100_diff1": 0.2089807772703975,
        "nauc_ndcg_at_100_max": 0.5239397690321543,
        "nauc_ndcg_at_100_std": 0.29123456982125717,
        "nauc_ndcg_at_10_diff1": 0.20555333230027603,
        "nauc_ndcg_at_10_max": 0.44316027023003046,
        "nauc_ndcg_at_10_std": 0.1921835220940756,
        "nauc_ndcg_at_1_diff1": 0.3862589251033909,
        "nauc_ndcg_at_1_max": 0.589976680174432,
        "nauc_ndcg_at_1_std": 0.2780515387897469,
        "nauc_ndcg_at_20_diff1": 0.20754208582741446,
        "nauc_ndcg_at_20_max": 0.4786092392092643,
        "nauc_ndcg_at_20_std": 0.23536973680564616,
        "nauc_ndcg_at_3_diff1": 0.1902823773882388,
        "nauc_ndcg_at_3_max": 0.5400466380622567,
        "nauc_ndcg_at_3_std": 0.2713874990424778,
        "nauc_ndcg_at_5_diff1": 0.18279298790691637,
        "nauc_ndcg_at_5_max": 0.4916119327522918,
        "nauc_ndcg_at_5_std": 0.2375397192963552,
        "nauc_precision_at_1000_diff1": -0.20510380600112582,
        "nauc_precision_at_1000_max": 0.4958820760698651,
        "nauc_precision_at_1000_std": 0.5402465580496146,
        "nauc_precision_at_100_diff1": -0.1994322347949809,
        "nauc_precision_at_100_max": 0.5206762748551254,
        "nauc_precision_at_100_std": 0.5568154081333078,
        "nauc_precision_at_10_diff1": -0.16707155441197413,
        "nauc_precision_at_10_max": 0.5600612846655972,
        "nauc_precision_at_10_std": 0.49419688804691536,
        "nauc_precision_at_1_diff1": 0.3862589251033909,
        "nauc_precision_at_1_max": 0.589976680174432,
        "nauc_precision_at_1_std": 0.2780515387897469,
        "nauc_precision_at_20_diff1": -0.18471041949530417,
        "nauc_precision_at_20_max": 0.5458950955439645,
        "nauc_precision_at_20_std": 0.5355982267058214,
        "nauc_precision_at_3_diff1": -0.03826790088047189,
        "nauc_precision_at_3_max": 0.5833083970750171,
        "nauc_precision_at_3_std": 0.380196662597275,
        "nauc_precision_at_5_diff1": -0.11789367842600275,
        "nauc_precision_at_5_max": 0.5708494593335263,
        "nauc_precision_at_5_std": 0.42860609671688105,
        "nauc_recall_at_1000_diff1": 0.1341309660059583,
        "nauc_recall_at_1000_max": 0.5923755841077135,
        "nauc_recall_at_1000_std": 0.5980459502693942,
        "nauc_recall_at_100_diff1": 0.12181394285840096,
        "nauc_recall_at_100_max": 0.47090136790318127,
        "nauc_recall_at_100_std": 0.3959369184297595,
        "nauc_recall_at_10_diff1": 0.17356300971546512,
        "nauc_recall_at_10_max": 0.25475707245853674,
        "nauc_recall_at_10_std": 0.041819982320384745,
        "nauc_recall_at_1_diff1": 0.41727578149080663,
        "nauc_recall_at_1_max": -0.1402656422184478,
        "nauc_recall_at_1_std": -0.26168722519030313,
        "nauc_recall_at_20_diff1": 0.14273713155999543,
        "nauc_recall_at_20_max": 0.36251116771924663,
        "nauc_recall_at_20_std": 0.1912123941692314,
        "nauc_recall_at_3_diff1": 0.2873719855400218,
        "nauc_recall_at_3_max": -0.041198403561830285,
        "nauc_recall_at_3_std": -0.21921947922872737,
        "nauc_recall_at_5_diff1": 0.23680082643694844,
        "nauc_recall_at_5_max": 0.06580524171324151,
        "nauc_recall_at_5_std": -0.14104561361502632,
        "ndcg_at_1": 0.78989,
        "ndcg_at_10": 0.73143,
        "ndcg_at_100": 0.78829,
        "ndcg_at_1000": 0.80026,
        "ndcg_at_20": 0.75787,
        "ndcg_at_3": 0.7417,
        "ndcg_at_5": 0.72641,
        "precision_at_1": 0.78989,
        "precision_at_10": 0.37304,
        "precision_at_100": 0.04828,
        "precision_at_1000": 0.00511,
        "precision_at_20": 0.21403,
        "precision_at_3": 0.65461,
        "precision_at_5": 0.54942,
        "recall_at_1": 0.22347,
        "recall_at_10": 0.73318,
        "recall_at_100": 0.91093,
        "recall_at_1000": 0.97197,
        "recall_at_20": 0.81286,
        "recall_at_3": 0.46573,
        "recall_at_5": 0.59383
      }
    ]
  },
  "task_name": "T2Retrieval"
}

阶段二
:caption: outputs/stage2/jina-reranker-v2-base-multilingual/master/T2Retrieval.json

{
  "dataset_revision": "8731a845f1bf500a4f111cf1070785c793d10e64",
  "evaluation_time": 332.15709686279297,
  "kg_co2_emissions": null,
  "mteb_version": "1.14.15",
  "scores": {
    "dev": [
      {
        "hf_subset": "default",
        "languages": [
          "cmn-Hans"
        ],
        "main_score": 0.661,
        "map_at_1": 0.24264,
        "map_at_10": 0.56291,
        "map_at_100": 0.56291,
        "map_at_1000": 0.56291,
        "map_at_20": 0.56291,
        "map_at_3": 0.4714,
        "map_at_5": 0.56291,
        "mrr_at_1": 0.841969139049623,
        "mrr_at_10": 0.8689147524694633,
        "mrr_at_100": 0.8689147524694633,
        "mrr_at_1000": 0.8689147524694633,
        "mrr_at_20": 0.8689147524694633,
        "mrr_at_3": 0.8664883979192248,
        "mrr_at_5": 0.8689147524694633,
        "nauc_map_at_1000_diff1": 0.12071580301051653,
        "nauc_map_at_1000_max": 0.2536691069727338,
        "nauc_map_at_1000_std": 0.343624832364704,
        "nauc_map_at_100_diff1": 0.12071580301051653,
        "nauc_map_at_100_max": 0.2536691069727338,
        "nauc_map_at_100_std": 0.343624832364704,
        "nauc_map_at_10_diff1": 0.12071580301051653,
        "nauc_map_at_10_max": 0.2536691069727338,
        "nauc_map_at_10_std": 0.343624832364704,
        "nauc_map_at_1_diff1": 0.47964980727810325,
        "nauc_map_at_1_max": -0.08015044571696166,
        "nauc_map_at_1_std": 0.3507257834956417,
        "nauc_map_at_20_diff1": 0.12071580301051653,
        "nauc_map_at_20_max": 0.2536691069727338,
        "nauc_map_at_20_std": 0.343624832364704,
        "nauc_map_at_3_diff1": 0.23481937699306626,
        "nauc_map_at_3_max": 0.10372745264123306,
        "nauc_map_at_3_std": 0.45345158923063256,
        "nauc_map_at_5_diff1": 0.12071580301051653,
        "nauc_map_at_5_max": 0.2536691069727338,
        "nauc_map_at_5_std": 0.343624832364704,
        "nauc_mrr_at_1000_diff1": 0.23393918304502795,
        "nauc_mrr_at_1000_max": 0.8703379129725659,
        "nauc_mrr_at_1000_std": 0.5785333616122065,
        "nauc_mrr_at_100_diff1": 0.23393918304502795,
        "nauc_mrr_at_100_max": 0.8703379129725659,
        "nauc_mrr_at_100_std": 0.5785333616122065,
        "nauc_mrr_at_10_diff1": 0.23393918304502795,
        "nauc_mrr_at_10_max": 0.8703379129725659,
        "nauc_mrr_at_10_std": 0.5785333616122065,
        "nauc_mrr_at_1_diff1": 0.2520016067648708,
        "nauc_mrr_at_1_max": 0.8560897633767299,
        "nauc_mrr_at_1_std": 0.5642467684745208,
        "nauc_mrr_at_20_diff1": 0.23393918304502795,
        "nauc_mrr_at_20_max": 0.8703379129725659,
        "nauc_mrr_at_20_std": 0.5785333616122065,
        "nauc_mrr_at_3_diff1": 0.2343988881957151,
        "nauc_mrr_at_3_max": 0.8695482778251757,
        "nauc_mrr_at_3_std": 0.5799167198804328,
        "nauc_mrr_at_5_diff1": 0.23393918304502795,
        "nauc_mrr_at_5_max": 0.8703379129725659,
        "nauc_mrr_at_5_std": 0.5785333616122065,
        "nauc_ndcg_at_1000_diff1": 0.11252208055013257,
        "nauc_ndcg_at_1000_max": 0.3417865079349515,
        "nauc_ndcg_at_1000_std": 0.3623961771041499,
        "nauc_ndcg_at_100_diff1": 0.11252208055013257,
        "nauc_ndcg_at_100_max": 0.3417865079349515,
        "nauc_ndcg_at_100_std": 0.3623961771041499,
        "nauc_ndcg_at_10_diff1": 0.10015448775533999,
        "nauc_ndcg_at_10_max": 0.3761759074862075,
        "nauc_ndcg_at_10_std": 0.35152523471339914,
        "nauc_ndcg_at_1_diff1": 0.2524564785684737,
        "nauc_ndcg_at_1_max": 0.8566368743831702,
        "nauc_ndcg_at_1_std": 0.5635391925059349,
        "nauc_ndcg_at_20_diff1": 0.11228113618796766,
        "nauc_ndcg_at_20_max": 0.34274993051851965,
        "nauc_ndcg_at_20_std": 0.36216437469674284,
        "nauc_ndcg_at_3_diff1": -0.062134030685870506,
        "nauc_ndcg_at_3_max": 0.7183183844837573,
        "nauc_ndcg_at_3_std": 0.3352626268658533,
        "nauc_ndcg_at_5_diff1": -0.04476981761624879,
        "nauc_ndcg_at_5_max": 0.6272060974309411,
        "nauc_ndcg_at_5_std": 0.21341258393783158,
        "nauc_precision_at_1000_diff1": -0.3554940965683014,
        "nauc_precision_at_1000_max": 0.605443274008298,
        "nauc_precision_at_1000_std": -0.13073611213585504,
        "nauc_precision_at_100_diff1": -0.35549409656830133,
        "nauc_precision_at_100_max": 0.6054432740082977,
        "nauc_precision_at_100_std": -0.13073611213585531,
        "nauc_precision_at_10_diff1": -0.3554940965683011,
        "nauc_precision_at_10_max": 0.6054432740082981,
        "nauc_precision_at_10_std": -0.1307361121358551,
        "nauc_precision_at_1_diff1": 0.2524564785684737,
        "nauc_precision_at_1_max": 0.8566368743831702,
        "nauc_precision_at_1_std": 0.5635391925059349,
        "nauc_precision_at_20_diff1": -0.3554940965683011,
        "nauc_precision_at_20_max": 0.6054432740082981,
        "nauc_precision_at_20_std": -0.1307361121358551,
        "nauc_precision_at_3_diff1": -0.3377658698816377,
        "nauc_precision_at_3_max": 0.6780151277792397,
        "nauc_precision_at_3_std": 0.12291559606586676,
        "nauc_precision_at_5_diff1": -0.3554940965683011,
        "nauc_precision_at_5_max": 0.6054432740082981,
        "nauc_precision_at_5_std": -0.1307361121358551,
        "nauc_recall_at_1000_diff1": 0.1091970342988605,
        "nauc_recall_at_1000_max": 0.18339955163544436,
        "nauc_recall_at_1000_std": 0.30756376767627086,
        "nauc_recall_at_100_diff1": 0.1091970342988605,
        "nauc_recall_at_100_max": 0.18339955163544436,
        "nauc_recall_at_100_std": 0.30756376767627086,
        "nauc_recall_at_10_diff1": 0.1091970342988605,
        "nauc_recall_at_10_max": 0.18339955163544436,
        "nauc_recall_at_10_std": 0.30756376767627086,
        "nauc_recall_at_1_diff1": 0.47964980727810325,
        "nauc_recall_at_1_max": -0.08015044571696166,
        "nauc_recall_at_1_std": 0.3507257834956417,
        "nauc_recall_at_20_diff1": 0.1091970342988605,
        "nauc_recall_at_20_max": 0.18339955163544436,
        "nauc_recall_at_20_std": 0.30756376767627086,
        "nauc_recall_at_3_diff1": 0.22013063499116758,
        "nauc_recall_at_3_max": 0.054749114965246065,
        "nauc_recall_at_3_std": 0.4258163949018153,
        "nauc_recall_at_5_diff1": 0.1091970342988605,
        "nauc_recall_at_5_max": 0.18339955163544436,
        "nauc_recall_at_5_std": 0.30756376767627086,
        "ndcg_at_1": 0.84188,
        "ndcg_at_10": 0.661,
        "ndcg_at_100": 0.6534,
        "ndcg_at_1000": 0.6534,
        "ndcg_at_20": 0.65358,
        "ndcg_at_3": 0.7826,
        "ndcg_at_5": 0.74517,
        "precision_at_1": 0.84188,
        "precision_at_10": 0.27471,
        "precision_at_100": 0.02747,
        "precision_at_1000": 0.00275,
        "precision_at_20": 0.13736,
        "precision_at_3": 0.68633,
        "precision_at_5": 0.54942,
        "recall_at_1": 0.24264,
        "recall_at_10": 0.59383,
        "recall_at_100": 0.59383,
        "recall_at_1000": 0.59383,
        "recall_at_20": 0.59383,
        "recall_at_3": 0.48934,
        "recall_at_5": 0.59383
      }
    ]
  },
  "task_name": "T2Retrieval"
}

自定义评测数据集

[自定义检索评测](../../../advanced_guides/custom_dataset/embedding.md)