evalscope/docs/en/get_started/supported_dataset.md

501 lines
38 KiB
Markdown

# Supported Datasets
## 1. Native Supported Datasets
```{tip}
The framework currently supports the following datasets natively. If the dataset you need is not on the list, you may submit an [issue](https://github.com/modelscope/evalscope/issues), and we will support it as soon as possible. Alternatively, you can refer to the [Benchmark Addition Guide](../advanced_guides/add_benchmark.md) to add datasets by yourself and submit a [PR](https://github.com/modelscope/evalscope/pulls). Contributions are welcome.
You can also use other tools supported by this framework for evaluation, such as [OpenCompass](../user_guides/backend/opencompass_backend.md) for language model evaluation, or [VLMEvalKit](../user_guides/backend/vlmevalkit_backend.md) for multimodal model evaluation.
```
### LLM Evaluation Datasets
| Name | Dataset ID | Task Category | Remarks |
|-------------------|------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|
| `aime24` | [HuggingFaceH4/aime_2024](https://modelscope.cn/datasets/HuggingFaceH4/aime_2024/summary) | Math Competition | |
| `aime25` | [opencompass/AIME2025](https://modelscope.cn/datasets/opencompass/AIME2025/summary) | Math Competition | Part1,2 |
| `alpaca_eval`<sup>3</sup> | [AI-ModelScope/alpaca_eval](https://www.modelscope.cn/datasets/AI-ModelScope/alpaca_eval/dataPeview) | Instruction Following | <details><summary>Note</summary>`length-controlled winrate` is not currently supported; Official Judge model is `gpt-4-1106-preview`, baseline model is `gpt-4-turbo`</summary> |
| `arc` | [modelscope/ai2_arc](https://modelscope.cn/datasets/modelscope/ai2_arc/summary) | Exam | |
| `arena_hard`<sup>3</sup> | [AI-ModelScope/arena-hard-auto-v0.1](https://modelscope.cn/datasets/AI-ModelScope/arena-hard-auto-v0.1/summary) | Comprehensive Reasoning | <details><summary>Note</summary>`style-control` is not currently supported; Official Judge model is `gpt-4-1106-preview`, baseline model is `gpt-4-0314` </summary> |
| `bbh` | [modelscope/bbh](https://modelscope.cn/datasets/modelscope/bbh/summary) | Comprehensive Reasoning | |
| `ceval` | [modelscope/ceval-exam](https://modelscope.cn/datasets/modelscope/ceval-exam/summary) | Chinese Comprehensive Exam | |
| `chinese_simpleqa`<sup>3</sup> | [AI-ModelScope/Chinese-SimpleQA](https://modelscope.cn/datasets/AI-ModelScope/Chinese-SimpleQA/summary) | Chinese Knowledge Q&A | Use `primary_category` field as sub-dataset |
| `cmmlu` | [modelscope/cmmlu](https://modelscope.cn/datasets/modelscope/cmmlu/summary) | Chinese Comprehensive Exam | |
| `competition_math`| [modelscope/competition_math](https://modelscope.cn/datasets/modelscope/competition_math/summary) | Math Competition | Use `level` field as sub-dataset |
| `drop` | [AI-ModelScope/DROP](https://modelscope.cn/datasets/AI-ModelScope/DROP/summary) | Reading Comprehension, Reasoning | |
| `gpqa` | [modelscope/gpqa](https://modelscope.cn/datasets/modelscope/gpqa/summary) | Expert-Level Examination | |
| `gsm8k` | [modelscope/gsm8k](https://modelscope.cn/datasets/modelscope/gsm8k/summary) | Math Problems | |
| `hellaswag` | [modelscope/hellaswag](https://modelscope.cn/datasets/modelscope/hellaswag/summary) | Common Sense Reasoning | |
| `humaneval`<sup>2</sup> | [modelscope/humaneval](https://modelscope.cn/datasets/modelscope/humaneval/summary) | Code Generation | |
| `ifeval`<sup>4</sup> | [modelscope/ifeval](https://modelscope.cn/datasets/opencompass/ifeval/summary) | Instruction Following | |
| `iquiz` | [modelscope/iquiz](https://modelscope.cn/datasets/AI-ModelScope/IQuiz/summary) | IQ and EQ | |
| `live_code_bench`<sup>2,4</sup> | [AI-ModelScope/code_generation_lite](https://modelscope.cn/datasets/AI-ModelScope/code_generation_lite/summary) | Code Generation | <details><summary>Parameter Description</summary> Sub-datasets support `release_v1`, `release_v5`, `v1`, `v4_v5` version tags; `dataset-args` supports setting `{'extra_params': {'start_date': '2024-12-01','end_date': '2025-01-01'}}` to filter specific time range questions </details> |
| `math_500` | [AI-ModelScope/MATH-500](https://modelscope.cn/datasets/AI-ModelScope/MATH-500/summary) | Math Competition | Use `level` field as sub-dataset |
| `maritime_bench` | [HiDolphin/MaritimeBench](https://modelscope.cn/datasets/HiDolphin/MaritimeBench/summary) | Maritime Knowledge | |
| `mmlu` | [modelscope/mmlu](https://modelscope.cn/datasets/modelscope/mmlu/summary) | Comprehensive Exam | |
| `mmlu_pro` | [modelscope/mmlu-pro](https://modelscope.cn/datasets/modelscope/mmlu-pro/summary) | Comprehensive Exam | Use `category` field as sub-dataset |
| `mmlu_redux` | [AI-ModelScope/mmlu-redux-2.0](https://modelscope.cn/datasets/AI-ModelScope/mmlu-redux-2.0/summary) | Comprehensive Exam | |
| `musr` | [AI-ModelScope/MuSR](https://www.modelscope.cn/datasets/AI-ModelScope/MuSR/summary) | Multi-step Soft Reasoning | |
| `process_bench` | [Qwen/ProcessBench](https://www.modelscope.cn/datasets/Qwen/ProcessBench/summary) | Mathematical Process Reasoning | |
| `race` | [modelscope/race](https://modelscope.cn/datasets/modelscope/race/summary) | Reading Comprehension | |
| `simple_qa`<sup>3</sup> | [AI-ModelScope/SimpleQA](https://modelscope.cn/datasets/AI-ModelScope/SimpleQA/summary) | Knowledge Q&A | |
| `super_gpqa` | [m-a-p/SuperGPQA](https://www.modelscope.cn/datasets/m-a-p/SuperGPQA/dataPeview) | Expert-Level Examination | Use `field` field as sub-dataset |
| `tool_bench` | [AI-ModelScope/ToolBench-Statich](https://modelscope.cn/datasets/AI-ModelScope/ToolBench-Static/summary) | Tool Calling | Refer to [usage doc](../third_party/toolbench.md) |
| `trivia_qa` | [modelscope/trivia_qa](https://modelscope.cn/datasets/modelscope/trivia_qa/summary) | Knowledge Q&A | |
| `truthful_qa`<sup>1</sup> | [modelscope/truthful_qa](https://modelscope.cn/datasets/modelscope/truthful_qa/summary) | Safety | |
| `winogrande` | [AI-ModelScope/winogrande_val](https://modelscope.cn/datasets/AI-ModelScope/winogrande_val/summary) | Reasoning | |
```{note}
**1.** Evaluation requires calculating logits, not currently supported for API service evaluation (`eval-type != server`).
**2.** Due to operations involving code execution, it is recommended to run in a sandbox environment (e.g., Docker) to prevent impact on the local environment.
**3.** This dataset requires specifying a Judge Model for evaluation. Refer to [Judge Parameters](./parameters.md#judge-parameters).
**4.** For better evaluation results, it is recommended that reasoning models set post-processing corresponding to the dataset, such as `{"filters": {"remove_until": "</think>"}}`.
```
### AIGC Evaluation Datasets
This framework also supports evaluation datasets related to text-to-image and other AIGC tasks. The specific datasets are as follows:
| Name | Dataset ID | Task Type | Remarks |
|---------------|------------------|-----------------|--------------------------------|
| `general_t2i` | | General Text-to-Image | Refer to the tutorial |
| `evalmuse` | [AI-ModelScope/T2V-Eval-Prompts](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/summary) | Text-Image Consistency | EvalMuse subset, default metric is `FGA_BLIP2Score` |
| `genai_bench` | [AI-ModelScope/T2V-Eval-Prompts](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/) | Text-Image Consistency | GenAI-Bench-1600 subset, default metric is `VQAScore` |
| `hpdv2` | [AI-ModelScope/T2V-Eval-Prompts](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/) | Text-Image Consistency | HPDv2 subset, default metric is `HPSv2.1Score` |
| `tifa160` | [AI-ModelScope/T2V-Eval-Prompts](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/) | Text-Image Consistency | TIFA160 subset, default metric is `PickScore` |
## 2. OpenCompass Backend
Refer to the [detailed explanation](https://github.com/open-compass/opencompass#-dataset-support)
<table align="center">
<tbody>
<tr align="center" valign="bottom">
<td>
<b>Language</b>
</td>
<td>
<b>Knowledge</b>
</td>
<td>
<b>Reasoning</b>
</td>
<td>
<b>Examination</b>
</td>
</tr>
<tr valign="top">
<td>
<details open>
<summary><b>Word Definition</b></summary>
- WiC
- SummEdits
</details>
<details open>
<summary><b>Idiom Learning</b></summary>
- CHID
</details>
<details open>
<summary><b>Semantic Similarity</b></summary>
- AFQMC
- BUSTM
</details>
<details open>
<summary><b>Coreference Resolution</b></summary>
- CLUEWSC
- WSC
- WinoGrande
</details>
<details open>
<summary><b>Translation</b></summary>
- Flores
- IWSLT2017
</details>
<details open>
<summary><b>Multi-language Question Answering</b></summary>
- TyDi-QA
- XCOPA
</details>
<details open>
<summary><b>Multi-language Summary</b></summary>
- XLSum
</details>
</td>
<td>
<details open>
<summary><b>Knowledge Question Answering</b></summary>
- BoolQ
- CommonSenseQA
- NaturalQuestions
- TriviaQA
</details>
</td>
<td>
<details open>
<summary><b>Textual Entailment</b></summary>
- CMNLI
- OCNLI
- OCNLI_FC
- AX-b
- AX-g
- CB
- RTE
- ANLI
</details>
<details open>
<summary><b>Commonsense Reasoning</b></summary>
- StoryCloze
- COPA
- ReCoRD
- HellaSwag
- PIQA
- SIQA
</details>
<details open>
<summary><b>Mathematical Reasoning</b></summary>
- MATH
- GSM8K
</details>
<details open>
<summary><b>Theorem Application</b></summary>
- TheoremQA
- StrategyQA
- SciBench
</details>
<details open>
<summary><b>Comprehensive Reasoning</b></summary>
- BBH
</details>
</td>
<td>
<details open>
<summary><b>Junior High, High School, University, Professional Examinations</b></summary>
- C-Eval
- AGIEval
- MMLU
- GAOKAO-Bench
- CMMLU
- ARC
- Xiezhi
</details>
<details open>
<summary><b>Medical Examinations</b></summary>
- CMB
</details>
</td>
</tr>
</td>
</tr>
</tbody>
<tbody>
<tr align="center" valign="bottom">
<td>
<b>Understanding</b>
</td>
<td>
<b>Long Context</b>
</td>
<td>
<b>Safety</b>
</td>
<td>
<b>Code</b>
</td>
</tr>
<tr valign="top">
<td>
<details open>
<summary><b>Reading Comprehension</b></summary>
- C3
- CMRC
- DRCD
- MultiRC
- RACE
- DROP
- OpenBookQA
- SQuAD2.0
</details>
<details open>
<summary><b>Content Summary</b></summary>
- CSL
- LCSTS
- XSum
- SummScreen
</details>
<details open>
<summary><b>Content Analysis</b></summary>
- EPRSTMT
- LAMBADA
- TNEWS
</details>
</td>
<td>
<details open>
<summary><b>Long Context Understanding</b></summary>
- LEval
- LongBench
- GovReports
- NarrativeQA
- Qasper
</details>
</td>
<td>
<details open>
<summary><b>Safety</b></summary>
- CivilComments
- CrowsPairs
- CValues
- JigsawMultilingual
- TruthfulQA
</details>
<details open>
<summary><b>Robustness</b></summary>
- AdvGLUE
</details>
</td>
<td>
<details open>
<summary><b>Code</b></summary>
- HumanEval
- HumanEvalX
- MBPP
- APPs
- DS1000
</details>
</td>
</tr>
</td>
</tr>
</tbody>
</table>
## 3. VLMEvalKit Backend
```{note}
For more comprehensive instructions and an up-to-date list of datasets, please refer to [detailed instructions](https://aicarrier.feishu.cn/wiki/Qp7wwSzQ9iK1Y6kNUJVcr6zTnPe?table=tblsdEpLieDoCxtb).
```
### Image Understanding Dataset
Abbreviations used:
- `MCQ`: Multiple Choice Questions;
- `Y/N`: Yes/No Questions;
- `MTT`: Multiturn Dialogue Evaluation;
- `MTI`: Multi-image Input Evaluation
| Dataset | Dataset Names | Task |
|-------------------------------------------------------------|--------------------------------------------------------|--------------------------|
| [**MMBench Series**](https://github.com/open-compass/mmbench/): <br>MMBench, MMBench-CN, CCBench | MMBench\_DEV\_[EN/CN] <br>MMBench\_TEST\_[EN/CN]<br>MMBench\_DEV\_[EN/CN]\_V11<br>MMBench\_TEST\_[EN/CN]\_V11<br>CCBench | MCQ |
| [**MMStar**](https://github.com/MMStar-Benchmark/MMStar) | MMStar | MCQ |
| [**MME**](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation) | MME | Y/N |
| [**SEEDBench Series**](https://github.com/AILab-CVC/SEED-Bench) | SEEDBench_IMG <br>SEEDBench2 <br>SEEDBench2_Plus | MCQ |
| [**MM-Vet**](https://github.com/yuweihao/MM-Vet) | MMVet | VQA |
| [**MMMU**](https://mmmu-benchmark.github.io) | MMMU\_[DEV_VAL/TEST] | MCQ |
| [**MathVista**](https://mathvista.github.io) | MathVista_MINI | VQA |
| [**ScienceQA_IMG**](https://scienceqa.github.io) | ScienceQA\_[VAL/TEST] | MCQ |
| [**COCO Caption**](https://cocodataset.org) | COCO_VAL | Caption |
| [**HallusionBench**](https://github.com/tianyi-lab/HallusionBench) | HallusionBench | Y/N |
| [**OCRVQA**](https://ocr-vqa.github.io)* | OCRVQA\_[TESTCORE/TEST] | VQA |
| [**TextVQA**](https://textvqa.org)* | TextVQA_VAL | VQA |
| [**ChartQA**](https://github.com/vis-nlp/ChartQA)* | ChartQA_TEST | VQA |
| [**AI2D**](https://allenai.org/data/diagrams) | AI2D\_[TEST/TEST_NO_MASK] | MCQ |
| [**LLaVABench**](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) | LLaVABench | VQA |
| [**DocVQA**](https://www.docvqa.org)+ | DocVQA\_[VAL/TEST] | VQA |
| [**InfoVQA**](https://www.docvqa.org/datasets/infographicvqa)+ | InfoVQA\_[VAL/TEST] | VQA |
| [**OCRBench**](https://github.com/Yuliang-Liu/MultimodalOCR) | OCRBench | VQA |
| [**RealWorldQA**](https://x.ai/blog/grok-1.5v) | RealWorldQA | MCQ |
| [**POPE**](https://github.com/AoiDragon/POPE) | POPE | Y/N |
| [**Core-MM**](https://github.com/core-mm/core-mm)- | CORE_MM (MTI) | VQA |
| [**MMT-Bench**](https://mmt-bench.github.io) | MMT-Bench\_[VAL/ALL]<br>MMT-Bench\_[VAL/ALL]\_MI | MCQ (MTI) |
| [**MLLMGuard**](https://github.com/Carol-gutianle/MLLMGuard) - | MLLMGuard_DS | VQA |
| [**AesBench**](https://github.com/yipoh/AesBench)+ | AesBench\_[VAL/TEST] | MCQ |
| [**VCR-wiki**](https://huggingface.co/vcr-org/) + | VCR\_[EN/ZH]\_[EASY/HARD]_[ALL/500/100] | VQA |
| [**MMLongBench-Doc**](https://mayubo2333.github.io/MMLongBench-Doc/)+ | MMLongBench_DOC | VQA (MTI) |
| [**BLINK**](https://zeyofu.github.io/blink/) | BLINK | MCQ (MTI) |
| [**MathVision**](https://mathvision-cuhk.github.io)+ | MathVision<br>MathVision_MINI | VQA |
| [**MT-VQA**](https://github.com/bytedance/MTVQA)+ | MTVQA_TEST | VQA |
| [**MMDU**](https://liuziyu77.github.io/MMDU/)+ | MMDU | VQA (MTT, MTI) |
| [**Q-Bench1**](https://github.com/Q-Future/Q-Bench)+ | Q-Bench1\_[VAL/TEST] | MCQ |
| [**A-Bench**](https://github.com/Q-Future/A-Bench)+ | A-Bench\_[VAL/TEST] | MCQ |
| [**DUDE**](https://arxiv.org/abs/2305.08455)+ | DUDE | VQA (MTI) |
| [**SlideVQA**](https://arxiv.org/abs/2301.04883)+ | SLIDEVQA<br>SLIDEVQA_MINI | VQA (MTI) |
| [**TaskMeAnything ImageQA Random**](https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-random)+ | TaskMeAnything_v1_imageqa_random | MCQ |
| [**MMMB and Multilingual MMBench**](https://sun-hailong.github.io/projects/Parrot/)+ | MMMB\_[ar/cn/en/pt/ru/tr]<br>MMBench_dev\_[ar/cn/en/pt/ru/tr]<br>MMMB<br>MTL_MMBench_DEV<br>PS: MMMB & MTL_MMBench_DEV <br>are **all-in-one** names for 6 langs | MCQ |
| [**A-OKVQA**](https://arxiv.org/abs/2206.01718)+ | A-OKVQA | MCQ |
| [**MuirBench**](https://muirbench.github.io) | MUIRBench | MCQ |
| [**GMAI-MMBench**](https://huggingface.co/papers/2408.03361)+ | GMAI-MMBench\_VAL | MCQ |
| [**TableVQABench**](https://arxiv.org/abs/2404.19205)+ | TableVQABench | VQA |
```{note}
**\*** Partial model testing results are provided [here](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard), while remaining models cannot achieve reasonable accuracy under zero-shot conditions.
**\+** Testing results for this evaluation set have not yet been provided.
**\-** VLMEvalKit only supports inference for this evaluation set and cannot output final accuracy.
```
### Video Understanding Dataset
| Dataset | Dataset Name | Task |
| ---------------------------------------------------- | --------------------------- | --------------------- |
| [**MMBench-Video**](https://mmbench-video.github.io) | MMBench-Video | VQA |
| [**MVBench**](https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/MVBENCH.md) | MVBench_MP4 | MCQ |
| [**MLVU**](https://github.com/JUNJIE99/MLVU) | MLVU | MCQ & VQA |
| [**TempCompass**](https://arxiv.org/abs/2403.00476) | TempCompass | MCQ & Y/N & Caption |
| [**LongVideoBench**](https://longvideobench.github.io/) | LongVideoBench | MCQ |
| [**Video-MME**](https://video-mme.github.io/) | Video-MME | MCQ |
## 4. RAGEval Backend
### CMTEB Evaluation Dataset
| Name | Hub Link | Description | Type | Category | Number of Test Samples |
|-----|-----|---------------------------|-----|-----|-----|
| [T2Retrieval](https://arxiv.org/abs/2304.03679) | [C-MTEB/T2Retrieval](https://modelscope.cn/datasets/C-MTEB/T2Retrieval) | T2Ranking: A large-scale Chinese paragraph ranking benchmark | Retrieval | s2p | 24,832 |
| [MMarcoRetrieval](https://github.com/unicamp-dl/mMARCO) | [C-MTEB/MMarcoRetrieval](https://modelscope.cn/datasets/C-MTEB/MMarcoRetrieval) | mMARCO is the multilingual version of the MS MARCO paragraph ranking dataset | Retrieval | s2p | 7,437 |
| [DuRetrieval](https://aclanthology.org/2022.emnlp-main.357.pdf) | [C-MTEB/DuRetrieval](https://modelscope.cn/datasets/C-MTEB/DuRetrieval) | A large-scale Chinese web search engine paragraph retrieval benchmark | Retrieval | s2p | 4,000 |
| [CovidRetrieval](https://aclanthology.org/2022.emnlp-main.357.pdf) | [C-MTEB/CovidRetrieval](https://modelscope.cn/datasets/C-MTEB/CovidRetrieval) | COVID-19 news articles | Retrieval | s2p | 949 |
| [CmedqaRetrieval](https://aclanthology.org/2022.emnlp-main.357.pdf) | [C-MTEB/CmedqaRetrieval](https://modelscope.cn/datasets/C-MTEB/CmedqaRetrieval) | Online medical consultation texts | Retrieval | s2p | 3,999 |
| [EcomRetrieval](https://arxiv.org/abs/2203.03367) | [C-MTEB/EcomRetrieval](https://modelscope.cn/datasets/C-MTEB/EcomRetrieval) | Paragraph retrieval dataset collected from Alibaba e-commerce search engine systems | Retrieval | s2p | 1,000 |
| [MedicalRetrieval](https://arxiv.org/abs/2203.03367) | [C-MTEB/MedicalRetrieval](https://modelscope.cn/datasets/C-MTEB/MedicalRetrieval) | Paragraph retrieval dataset collected from Alibaba medical search engine systems | Retrieval | s2p | 1,000 |
| [VideoRetrieval](https://arxiv.org/abs/2203.03367) | [C-MTEB/VideoRetrieval](https://modelscope.cn/datasets/C-MTEB/VideoRetrieval) | Paragraph retrieval dataset collected from Alibaba video search engine systems | Retrieval | s2p | 1,000 |
| [T2Reranking](https://arxiv.org/abs/2304.03679) | [C-MTEB/T2Reranking](https://modelscope.cn/datasets/C-MTEB/T2Reranking) | T2Ranking: A large-scale Chinese paragraph ranking benchmark | Re-ranking | s2p | 24,382 |
| [MMarcoReranking](https://github.com/unicamp-dl/mMARCO) | [C-MTEB/MMarco-reranking](https://modelscope.cn/datasets/C-MTEB/Mmarco-reranking) | mMARCO is the multilingual version of the MS MARCO paragraph ranking dataset | Re-ranking | s2p | 7,437 |
| [CMedQAv1](https://github.com/zhangsheng93/cMedQA) | [C-MTEB/CMedQAv1-reranking](https://modelscope.cn/datasets/C-MTEB/CMedQAv1-reranking) | Chinese community medical Q&A | Re-ranking | s2p | 2,000 |
| [CMedQAv2](https://github.com/zhangsheng93/cMedQA2) | [C-MTEB/CMedQAv2-reranking](https://modelscope.cn/datasets/C-MTEB/C-MTEB/CMedQAv2-reranking) | Chinese community medical Q&A | Re-ranking | s2p | 4,000 |
| [Ocnli](https://arxiv.org/abs/2010.05444) | [C-MTEB/OCNLI](https://modelscope.cn/datasets/C-MTEB/OCNLI) | Original Chinese natural language inference dataset | Pair Classification | s2s | 3,000 |
| [Cmnli](https://modelscope.cn/datasets/clue/viewer/cmnli) | [C-MTEB/CMNLI](https://modelscope.cn/datasets/C-MTEB/CMNLI) | Chinese multi-class natural language inference | Pair Classification | s2s | 139,000 |
| [CLSClusteringS2S](https://arxiv.org/abs/2209.05034) | [C-MTEB/CLSClusteringS2S](https://modelscope.cn/datasets/C-MTEB/C-MTEB/CLSClusteringS2S) | Clustering titles from the CLS dataset. Clustering based on 13 sets of main categories. | Clustering | s2s | 10,000 |
| [CLSClusteringP2P](https://arxiv.org/abs/2209.05034) | [C-MTEB/CLSClusteringP2P](https://modelscope.cn/datasets/C-MTEB/CLSClusteringP2P) | Clustering titles + abstracts from the CLS dataset. Clustering based on 13 sets of main categories. | Clustering | p2p | 10,000 |
| [ThuNewsClusteringS2S](http://thuctc.thunlp.org/) | [C-MTEB/ThuNewsClusteringS2S](https://modelscope.cn/datasets/C-MTEB/ThuNewsClusteringS2S) | Clustering titles from the THUCNews dataset | Clustering | s2s | 10,000 |
| [ThuNewsClusteringP2P](http://thuctc.thunlp.org/) | [C-MTEB/ThuNewsClusteringP2P](https://modelscope.cn/datasets/C-MTEB/ThuNewsClusteringP2P) | Clustering titles + abstracts from the THUCNews dataset | Clustering | p2p | 10,000 |
| [ATEC](https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC) | [C-MTEB/ATEC](https://modelscope.cn/datasets/C-MTEB/ATEC) | ATEC NLP Sentence Pair Similarity Competition | STS | s2s | 20,000 |
| [BQ](https://huggingface.co/datasets/shibing624/nli_zh) | [C-MTEB/BQ](https://modelscope.cn/datasets/C-MTEB/BQ) | Banking Question Semantic Similarity | STS | s2s | 10,000 |
| [LCQMC](https://huggingface.co/datasets/shibing624/nli_zh) | [C-MTEB/LCQMC](https://modelscope.cn/datasets/C-MTEB/LCQMC) | Large-scale Chinese Question Matching Corpus | STS | s2s | 12,500 |
| [PAWSX](https://arxiv.org/pdf/1908.11828.pdf) | [C-MTEB/PAWSX](https://modelscope.cn/datasets/C-MTEB/PAWSX) | Translated PAWS evaluation pairs | STS | s2s | 2,000 |
| [STSB](https://github.com/pluto-junzeng/CNSD) | [C-MTEB/STSB](https://modelscope.cn/datasets/C-MTEB/STSB) | Translated STS-B into Chinese | STS | s2s | 1,360 |
| [AFQMC](https://github.com/CLUEbenchmark/CLUE) | [C-MTEB/AFQMC](https://modelscope.cn/datasets/C-MTEB/AFQMC) | Ant Financial Question Matching Corpus | STS | s2s | 3,861 |
| [QBQTC](https://github.com/CLUEbenchmark/QBQTC) | [C-MTEB/QBQTC](https://modelscope.cn/datasets/C-MTEB/QBQTC) | QQ Browser Query Title Corpus | STS | s2s | 5,000 |
| [TNews](https://github.com/CLUEbenchmark/CLUE) | [C-MTEB/TNews-classification](https://modelscope.cn/datasets/C-MTEB/TNews-classification) | News Short Text Classification | Classification | s2s | 10,000 |
| [IFlyTek](https://github.com/CLUEbenchmark/CLUE) | [C-MTEB/IFlyTek-classification](https://modelscope.cn/datasets/C-MTEB/IFlyTek-classification) | Long Text Classification of Application Descriptions | Classification | s2s | 2,600 |
| [Waimai](https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/waimai_10k/intro.ipynb) | [C-MTEB/waimai-classification](https://modelscope.cn/datasets/C-MTEB/waimai-classification) | Sentiment Analysis of User Reviews on Food Delivery Platforms | Classification | s2s | 1,000 |
| [OnlineShopping](https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/online_shopping_10_cats/intro.ipynb) | [C-MTEB/OnlineShopping-classification](https://modelscope.cn/datasets/C-MTEB/OnlineShopping-classification) | Sentiment Analysis of User Reviews on Online Shopping Websites | Classification | s2s | 1,000 |
| [MultilingualSentiment](https://github.com/tyqiangz/multilingual-sentiment-datasets) | [C-MTEB/MultilingualSentiment-classification](https://modelscope.cn/datasets/C-MTEB/MultilingualSentiment-classification) | A set of multilingual sentiment datasets grouped into three categories: positive, neutral, negative | Classification | s2s | 3,000 |
| [JDReview](https://huggingface.co/datasets/kuroneko5943/jd21) | [C-MTEB/JDReview-classification](https://modelscope.cn/datasets/C-MTEB/JDReview-classification) | Reviews of iPhone | Classification | s2s | 533 |
For retrieval tasks, a sample of 100,000 candidates (including the ground truth) is drawn from the entire corpus to reduce inference costs.
### MTEB Evaluation Dataset
```{seealso}
See also: [MTEB Related Tasks](https://github.com/embeddings-benchmark/mteb/blob/main/docs/tasks.md)
```
### CLIP-Benchmark
| Dataset Name | Task Type | Notes |
|---------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|
| [muge](https://modelscope.cn/datasets/clip-benchmark/muge/) | zeroshot_retrieval | Chinese Multimodal Dataset |
| [flickr30k](https://modelscope.cn/datasets/clip-benchmark/flickr30k/) | zeroshot_retrieval | |
| [flickr8k](https://modelscope.cn/datasets/clip-benchmark/flickr8k/) | zeroshot_retrieval | |
| [mscoco_captions](https://modelscope.cn/datasets/clip-benchmark/mscoco_captions/) | zeroshot_retrieval | |
| [mscoco_captions2017](https://modelscope.cn/datasets/clip-benchmark/mscoco_captions2017/) | zeroshot_retrieval | |
| [imagenet1k](https://modelscope.cn/datasets/clip-benchmark/imagenet1k/) | zeroshot_classification| |
| [imagenetv2](https://modelscope.cn/datasets/clip-benchmark/imagenetv2/) | zeroshot_classification| |
| [imagenet_sketch](https://modelscope.cn/datasets/clip-benchmark/imagenet_sketch/) | zeroshot_classification| |
| [imagenet-a](https://modelscope.cn/datasets/clip-benchmark/imagenet-a/) | zeroshot_classification| |
| [imagenet-r](https://modelscope.cn/datasets/clip-benchmark/imagenet-r/) | zeroshot_classification| |
| [imagenet-o](https://modelscope.cn/datasets/clip-benchmark/imagenet-o/) | zeroshot_classification| |
| [objectnet](https://modelscope.cn/datasets/clip-benchmark/objectnet/) | zeroshot_classification| |
| [fer2013](https://modelscope.cn/datasets/clip-benchmark/fer2013/) | zeroshot_classification| |
| [voc2007](https://modelscope.cn/datasets/clip-benchmark/voc2007/) | zeroshot_classification| |
| [voc2007_multilabel](https://modelscope.cn/datasets/clip-benchmark/voc2007_multilabel/) | zeroshot_classification| |
| [sun397](https://modelscope.cn/datasets/clip-benchmark/sun397/) | zeroshot_classification| |
| [cars](https://modelscope.cn/datasets/clip-benchmark/cars/) | zeroshot_classification| |
| [fgvc_aircraft](https://modelscope.cn/datasets/clip-benchmark/fgvc_aircraft/) | zeroshot_classification| |
| [mnist](https://modelscope.cn/datasets/clip-benchmark/mnist/) | zeroshot_classification| |
| [stl10](https://modelscope.cn/datasets/clip-benchmark/stl10/) | zeroshot_classification| |
| [gtsrb](https://modelscope.cn/datasets/clip-benchmark/gtsrb/) | zeroshot_classification| |
| [country211](https://modelscope.cn/datasets/clip-benchmark/country211/) | zeroshot_classification| |
| [renderedsst2](https://modelscope.cn/datasets/clip-benchmark/renderedsst2/) | zeroshot_classification| |
| [vtab_caltech101](https://modelscope.cn/datasets/clip-benchmark/vtab_caltech101/) | zeroshot_classification| |
| [vtab_cifar10](https://modelscope.cn/datasets/clip-benchmark/vtab_cifar10/) | zeroshot_classification| |
| [vtab_cifar100](https://modelscope.cn/datasets/clip-benchmark/vtab_cifar100/) | zeroshot_classification| |
| [vtab_clevr_count_all](https://modelscope.cn/datasets/clip-benchmark/vtab_clevr_count_all/) | zeroshot_classification| |
| [vtab_clevr_closest_object_distance](https://modelscope.cn/datasets/clip-benchmark/vtab_clevr_closest_object_distance/) | zeroshot_classification| |
| [vtab_diabetic_retinopathy](https://modelscope.cn/datasets/clip-benchmark/vtab_diabetic_retinopathy/) | zeroshot_classification| |
| [vtab_dmlab](https://modelscope.cn/datasets/clip-benchmark/vtab_dmlab/) | zeroshot_classification| |
| [vtab_dsprites_label_orientation](https://modelscope.cn/datasets/clip-benchmark/vtab_dsprites_label_orientation/) | zeroshot_classification| |
| [vtab_dsprites_label_x_position](https://modelscope.cn/datasets/clip-benchmark/vtab_dsprites_label_x_position/) | zeroshot_classification| |
| [vtab_dsprites_label_y_position](https://modelscope.cn/datasets/clip-benchmark/vtab_dsprites_label_y_position/) | zeroshot_classification| |
| [vtab_dtd](https://modelscope.cn/datasets/clip-benchmark/vtab_dtd/) | zeroshot_classification| |
| [vtab_eurosat](https://modelscope.cn/datasets/clip-benchmark/vtab_eurosat/) | zeroshot_classification| |
| [vtab_kitti_closest_vehicle_distance](https://modelscope.cn/datasets/clip-benchmark/vtab_kitti_closest_vehicle_distance/) | zeroshot_classification| |
| [vtab_flowers](https://modelscope.cn/datasets/clip-benchmark/vtab_flowers/) | zeroshot_classification| |
| [vtab_pets](https://modelscope.cn/datasets/clip-benchmark/vtab_pets/) | zeroshot_classification| |
| [vtab_pcam](https://modelscope.cn/datasets/clip-benchmark/vtab_pcam/) | zeroshot_classification| |
| [vtab_resisc45](https://modelscope.cn/datasets/clip-benchmark/vtab_resisc45/) | zeroshot_classification| |
| [vtab_smallnorb_label_azimuth](https://modelscope.cn/datasets/clip-benchmark/vtab_smallnorb_label_azimuth/) | zeroshot_classification| |
| [vtab_smallnorb_label_elevation](https://modelscope.cn/datasets/clip-benchmark/vtab_smallnorb_label_elevation/) | zeroshot_classification| |
| [vtab_svhn](https://modelscope.cn/datasets/clip-benchmark/vtab_svhn/) | zeroshot_classification| |