evalscope_v0.17.0/evalscope.0.17.0/evalscope/benchmarks/arena_hard/utils.py

151 lines
4.5 KiB
Python

import math
import numpy as np
import pandas as pd
import re
from collections import defaultdict
from sklearn.linear_model import LogisticRegression
from tqdm import tqdm
from evalscope.utils.logger import get_logger
logger = get_logger()
def post_process_arenahard(completion):
result = re.findall(r'\[\[([AB<>=]+)\]\]', completion)
if result:
return result[0]
else:
return None
def get_battles_from_row(row, first_game_only=False, multiplier=3):
results = []
output = {'model_a': row['model_a'], 'model_b': row['model_b']}
game = row['games'][0]
weight = 1
if game['score'] == 'A=B':
output['winner'] = 'tie'
elif game['score'] == 'A>B':
output['winner'] = 'model_a'
elif game['score'] == 'A>>B':
output['winner'] = 'model_a'
weight = multiplier
elif game['score'] == 'B>A':
output['winner'] = 'model_b'
elif game['score'] == 'B>>A':
output['winner'] = 'model_b'
weight = multiplier
else:
weight = 0
if weight:
results += [output] * weight
if first_game_only:
return pd.DataFrame(results)
# game 2
output = {'model_a': row['model_a'], 'model_b': row['model_b']}
game = row['games'][1]
weight = 1
if game['score'] == 'A=B':
output['winner'] = 'tie'
elif game['score'] == 'A>B':
output['winner'] = 'model_b'
elif game['score'] == 'A>>B':
output['winner'] = 'model_b'
weight = multiplier
elif game['score'] == 'B>A':
output['winner'] = 'model_a'
elif game['score'] == 'B>>A':
output['winner'] = 'model_a'
weight = multiplier
else:
weight = 0
if weight:
results += [output] * weight
return pd.DataFrame(results)
def compute_mle_elo(df, SCALE=400, BASE=10, INIT_RATING=1000):
models = pd.concat([df['model_a'], df['model_b']]).unique()
models = pd.Series(np.arange(len(models)), index=models)
# duplicate battles
df = pd.concat([df, df], ignore_index=True)
p = len(models.index)
n = df.shape[0]
X = np.zeros([n, p])
X[np.arange(n), models[df['model_a']]] = +math.log(BASE)
X[np.arange(n), models[df['model_b']]] = -math.log(BASE)
# one A win => two A win
Y = np.zeros(n)
Y[df['winner'] == 'model_a'] = 1.0
# one tie => one A win + one B win
# find tie + tie (both bad) index
tie_idx = (df['winner'] == 'tie') | (df['winner'] == 'tie (bothbad)')
tie_idx[len(tie_idx) // 2:] = False
Y[tie_idx] = 1.0
if len(np.unique(Y)) < 2:
logger.info('Warning: Only one class in the data')
elo_scores = pd.Series(INIT_RATING, index=models.index)
if np.all(Y == 1.0):
elo_scores[df['model_a'].iloc[0]] += SCALE # Boost the winning model
elif np.all(Y == 0.0):
elo_scores[df['model_b'].iloc[0]] += SCALE # Boost the winning model
return elo_scores.sort_values(ascending=False)
lr = LogisticRegression(
fit_intercept=False, penalty=None, tol=1e-8) # May need to set a small value when not use GPT4 as judge model
lr.fit(X, Y)
elo_scores = SCALE * lr.coef_[0] + INIT_RATING
# set anchor as gpt4-0314 = 1000
if 'gpt4-0314' in models.index:
elo_scores += 1000 - elo_scores[models['gpt4-0314']]
return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
def get_bootstrap_result(battles, func_compute_elo, num_round):
rows = []
for _ in tqdm(range(num_round), desc='bootstrap'):
res = func_compute_elo(battles.sample(frac=1.0, replace=True))
if res is not None:
rows.append(res)
df = pd.DataFrame(rows)
return df[df.median().sort_values(ascending=False).index]
def predict_win_rate(elo_ratings, SCALE=400, BASE=10, INIT_RATING=1000):
names = sorted(list(elo_ratings.keys()))
wins = defaultdict(lambda: defaultdict(lambda: 0))
for a in names:
for b in names:
ea = 1 / (1 + BASE**((elo_ratings[b] - elo_ratings[a]) / SCALE))
wins[a][b] = ea
wins[b][a] = 1 - ea
data = {a: [wins[a][b] if a != b else np.NAN for b in names] for a in names}
df = pd.DataFrame(data, index=names)
df.index.name = 'model_a'
df.columns.name = 'model_b'
return df.T
def get_win_rate_column(df, column, baseline='gpt4-0314'):
to_dict = df[['model', column]].set_index('model').to_dict()[column]
win_rate_table = predict_win_rate(to_dict)
return win_rate_table[baseline].fillna(0.5).apply(lambda x: round(x, 4))