This commit is contained in:
hailin 2025-05-09 22:36:29 +08:00
parent 727305fbd4
commit 31458b7ac7
1 changed files with 18 additions and 34 deletions

View File

@ -1,4 +1,8 @@
import os import os
from typing import List
import asyncio
import faiss
from sentence_transformers import SentenceTransformer
from llama_index import ( from llama_index import (
SimpleDirectoryReader, SimpleDirectoryReader,
@ -7,47 +11,23 @@ from llama_index import (
PromptTemplate, PromptTemplate,
ServiceContext, ServiceContext,
) )
from llama_index.embeddings.base import BaseEmbedding from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.faiss import FaissVectorStore from llama_index.vector_stores.faiss import FaissVectorStore
from app.core.config import settings from app.core.config import settings
from scripts.permissions import get_user_allowed_indexes from scripts.permissions import get_user_allowed_indexes
import faiss
from typing import List
import asyncio
from sentence_transformers import SentenceTransformer
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
USER_INDEX_PATH = "index_data" USER_INDEX_PATH = "index_data"
USER_DOC_PATH = "docs" USER_DOC_PATH = "docs"
# ✅ 替代 CustomEmbedding用于 bge-m3 模型,自动加前缀
class CustomEmbedding(BaseEmbedding): class BGEEmbedding(HuggingFaceEmbedding):
model: SentenceTransformer # ✅ 显式声明是字段
def __init__(self, model_name: str):
from sentence_transformers import SentenceTransformer
self.model = SentenceTransformer(model_name)
# 同步方法(必须实现)
def _get_text_embedding(self, text: str) -> List[float]:
return self.model.encode(text).tolist()
def _get_query_embedding(self, query: str) -> List[float]: def _get_query_embedding(self, query: str) -> List[float]:
return self.model.encode(query).tolist() prefix = "Represent this sentence for searching relevant passages: "
return super()._get_query_embedding(prefix + query)
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
return self.model.encode(texts).tolist()
def _get_query_embeddings(self, queries: List[str]) -> List[List[float]]: def _get_query_embeddings(self, queries: List[str]) -> List[List[float]]:
return self.model.encode(queries).tolist() prefix = "Represent this sentence for searching relevant passages: "
return super()._get_query_embeddings([prefix + q for q in queries])
# 异步方法(必须实现,哪怕用同步方式包起来)
async def _aget_query_embedding(self, query: str) -> List[float]:
return self._get_query_embedding(query)
async def _aget_query_embeddings(self, queries: List[str]) -> List[List[float]]:
return self._get_query_embeddings(queries)
def build_user_index(user_id: str): def build_user_index(user_id: str):
doc_dir = os.path.join(USER_DOC_PATH, user_id) doc_dir = os.path.join(USER_DOC_PATH, user_id)
@ -55,13 +35,17 @@ def build_user_index(user_id: str):
raise FileNotFoundError(f"文档目录不存在: {doc_dir}") raise FileNotFoundError(f"文档目录不存在: {doc_dir}")
documents = SimpleDirectoryReader(doc_dir).load_data() documents = SimpleDirectoryReader(doc_dir).load_data()
embed_model = HuggingFaceEmbedding(model_name=settings.MODEL_NAME) embed_model = BGEEmbedding(model_name=settings.MODEL_NAME)
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=None) service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=None)
# ✅ 指定正确维度bge-m3 是 1024
faiss_index = faiss.IndexFlatL2(1024)
vector_store = FaissVectorStore(faiss_index=faiss_index)
index = VectorStoreIndex.from_documents( index = VectorStoreIndex.from_documents(
documents, documents,
vector_store=FaissVectorStore(), vector_store=vector_store,
service_context=service_context service_context=service_context
) )
@ -70,7 +54,7 @@ def build_user_index(user_id: str):
print(f"[BUILD] 为用户 {user_id} 构建并保存了索引 → {index_path}") print(f"[BUILD] 为用户 {user_id} 构建并保存了索引 → {index_path}")
def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str: def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
embed_model = HuggingFaceEmbedding(model_name=settings.MODEL_NAME) embed_model = BGEEmbedding(model_name=settings.MODEL_NAME)
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=None) service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=None)
all_nodes = [] all_nodes = []