This commit is contained in:
parent
94c8fce8f9
commit
b1cf0e61e1
|
|
@ -57,7 +57,7 @@ def search_docs(request: QueryRequest, user_id: str = Query(..., description="
|
||||||
logger.info("VectorStoreIndex loaded successfully.")
|
logger.info("VectorStoreIndex loaded successfully.")
|
||||||
|
|
||||||
# 将用户查询通过本地模型生成嵌入向量
|
# 将用户查询通过本地模型生成嵌入向量
|
||||||
query_vector = embedder._get_query_embedding(request.query) # 使用本地模型生成查询的嵌入向量
|
query_vector = embedder.encode([request.query]) # 使用本地模型生成查询的嵌入向量
|
||||||
logger.info(f"Generated query embedding: {query_vector}")
|
logger.info(f"Generated query embedding: {query_vector}")
|
||||||
|
|
||||||
# 使用 FaissVectorStore 检索最相似的节点
|
# 使用 FaissVectorStore 检索最相似的节点
|
||||||
|
|
|
||||||
|
|
@ -28,3 +28,4 @@ class BGEEmbedding:
|
||||||
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
||||||
|
|
||||||
embedder = BGEEmbedding()
|
embedder = BGEEmbedding()
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue