sglang.0.4.8.post1/sglang/docs/backend/sampling_params.md

307 lines
18 KiB
Markdown

# Sampling Parameters
This doc describes the sampling parameters of the SGLang Runtime. It is the low-level endpoint of the runtime.
If you want a high-level endpoint that can automatically handle chat templates, consider using the [OpenAI Compatible API](./openai_api_completions.ipynb).
## `/generate` Endpoint
The `/generate` endpoint accepts the following parameters in JSON format. For detailed usage, see the [native API doc](./native_api.ipynb). The object is defined at `io_struct.py::GenerateReqInput`. You can also read the source code to find more arguments and docs.
| Argument | Type/Default | Description |
|----------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| text | `Optional[Union[List[str], str]] = None` | The input prompt. Can be a single prompt or a batch of prompts. |
| input_ids | `Optional[Union[List[List[int]], List[int]]] = None` | The token IDs for text; one can specify either text or input_ids. |
| input_embeds | `Optional[Union[List[List[List[float]]], List[List[float]]]] = None` | The embeddings for input_ids; one can specify either text, input_ids, or input_embeds. |
| image_data | `Optional[Union[List[List[ImageDataItem]], List[ImageDataItem], ImageDataItem]] = None` | The image input. Can be an image instance, file name, URL, or base64 encoded string. Can be a single image, list of images, or list of lists of images. |
| audio_data | `Optional[Union[List[AudioDataItem], AudioDataItem]] = None` | The audio input. Can be a file name, URL, or base64 encoded string. |
| sampling_params | `Optional[Union[List[Dict], Dict]] = None` | The sampling parameters as described in the sections below. |
| rid | `Optional[Union[List[str], str]] = None` | The request ID. |
| return_logprob | `Optional[Union[List[bool], bool]] = None` | Whether to return log probabilities for tokens. |
| logprob_start_len | `Optional[Union[List[int], int]] = None` | If return_logprob, the start location in the prompt for returning logprobs. Default is "-1", which returns logprobs for output tokens only. |
| top_logprobs_num | `Optional[Union[List[int], int]] = None` | If return_logprob, the number of top logprobs to return at each position. |
| token_ids_logprob | `Optional[Union[List[List[int]], List[int]]] = None` | If return_logprob, the token IDs to return logprob for. |
| return_text_in_logprobs | `bool = False` | Whether to detokenize tokens in text in the returned logprobs. |
| stream | `bool = False` | Whether to stream output. |
| lora_path | `Optional[Union[List[Optional[str]], Optional[str]]] = None` | The path to the LoRA. |
| custom_logit_processor | `Optional[Union[List[Optional[str]], str]] = None` | Custom logit processor for advanced sampling control. Must be a serialized instance of `CustomLogitProcessor` using its `to_str()` method. For usage see below. |
| return_hidden_states | `Union[List[bool], bool] = False` | Whether to return hidden states. |
## Sampling parameters
The object is defined at `sampling_params.py::SamplingParams`. You can also read the source code to find more arguments and docs.
### Core parameters
| Argument | Type/Default | Description |
|-----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| max_new_tokens | `int = 128` | The maximum output length measured in tokens. |
| stop | `Optional[Union[str, List[str]]] = None` | One or multiple [stop words](https://platform.openai.com/docs/api-reference/chat/create#chat-create-stop). Generation will stop if one of these words is sampled. |
| stop_token_ids | `Optional[List[int]] = None` | Provide stop words in the form of token IDs. Generation will stop if one of these token IDs is sampled. |
| temperature | `float = 1.0` | [Temperature](https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature) when sampling the next token. `temperature = 0` corresponds to greedy sampling, a higher temperature leads to more diversity. |
| top_p | `float = 1.0` | [Top-p](https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_p) selects tokens from the smallest sorted set whose cumulative probability exceeds `top_p`. When `top_p = 1`, this reduces to unrestricted sampling from all tokens. |
| top_k | `int = -1` | [Top-k](https://developer.nvidia.com/blog/how-to-get-better-outputs-from-your-large-language-model/#predictability_vs_creativity) randomly selects from the `k` highest-probability tokens. |
| min_p | `float = 0.0` | [Min-p](https://github.com/huggingface/transformers/issues/27670) samples from tokens with probability larger than `min_p * highest_token_probability`. |
### Penalizers
| Argument | Type/Default | Description |
|--------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| frequency_penalty | `float = 0.0` | Penalizes tokens based on their frequency in generation so far. Must be between `-2` and `2` where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of penalization grows linearly with each appearance of a token. |
| presence_penalty | `float = 0.0` | Penalizes tokens if they appeared in the generation so far. Must be between `-2` and `2` where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of the penalization is constant if a token occurred. |
| min_new_tokens | `int = 0` | Forces the model to generate at least `min_new_tokens` until a stop word or EOS token is sampled. Note that this might lead to unintended behavior, for example, if the distribution is highly skewed towards these tokens. |
### Constrained decoding
Please refer to our dedicated guide on [constrained decoding](./structured_outputs.ipynb) for the following parameters.
| Argument | Type/Default | Description |
|-----------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| json_schema | `Optional[str] = None` | JSON schema for structured outputs. |
| regex | `Optional[str] = None` | Regex for structured outputs. |
| ebnf | `Optional[str] = None` | EBNF for structured outputs. |
| structural_tag | `Optional[str] = None` | The structal tag for structured outputs. |
### Other options
| Argument | Type/Default | Description |
|-------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| n | `int = 1` | Specifies the number of output sequences to generate per request. (Generating multiple outputs in one request (n > 1) is discouraged; repeating the same prompts several times offers better control and efficiency.) |
| ignore_eos | `bool = False` | Don't stop generation when EOS token is sampled. |
| skip_special_tokens | `bool = True` | Remove special tokens during decoding. |
| spaces_between_special_tokens | `bool = True` | Whether or not to add spaces between special tokens during detokenization. |
| no_stop_trim | `bool = False` | Don't trim stop words or EOS token from the generated text. |
| custom_params | `Optional[List[Optional[Dict[str, Any]]]] = None` | Used when employing `CustomLogitProcessor`. For usage, see below. |
## Examples
### Normal
Launch a server:
```bash
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```
Send a request:
```python
import requests
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "The capital of France is",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 32,
},
},
)
print(response.json())
```
Detailed example in [send request](./send_request.ipynb).
### Streaming
Send a request and stream the output:
```python
import requests, json
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "The capital of France is",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 32,
},
"stream": True,
},
stream=True,
)
prev = 0
for chunk in response.iter_lines(decode_unicode=False):
chunk = chunk.decode("utf-8")
if chunk and chunk.startswith("data:"):
if chunk == "data: [DONE]":
break
data = json.loads(chunk[5:].strip("\n"))
output = data["text"].strip()
print(output[prev:], end="", flush=True)
prev = len(output)
print("")
```
Detailed example in [openai compatible api](https://docs.sglang.ai/backend/openai_api_completions.html#id2).
### Multimodal
Launch a server:
```bash
python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov
```
Download an image:
```bash
curl -o example_image.png -L https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true
```
Send a request:
```python
import requests
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"<|im_start|>user\n<image>\nDescribe this image in a very short sentence.<|im_end|>\n"
"<|im_start|>assistant\n",
"image_data": "example_image.png",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 32,
},
},
)
print(response.json())
```
The `image_data` can be a file name, a URL, or a base64 encoded string. See also `python/sglang/srt/utils.py:load_image`.
Streaming is supported in a similar manner as [above](#streaming).
Detailed example in [openai api vision](./openai_api_vision.ipynb).
### Structured Outputs (JSON, Regex, EBNF)
You can specify a JSON schema, regular expression or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints. Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified for a request.
SGLang supports two grammar backends:
- [Outlines](https://github.com/dottxt-ai/outlines): Supports JSON schema and regular expression constraints.
- [XGrammar](https://github.com/mlc-ai/xgrammar) (default): Supports JSON schema, regular expression, and EBNF constraints.
- XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md).
If instead you want to initialize the Outlines backend, you can use `--grammar-backend outlines` flag:
```bash
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \
--port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: xgrammar)
```
```python
import json
import requests
json_schema = json.dumps({
"type": "object",
"properties": {
"name": {"type": "string", "pattern": "^[\\w]+$"},
"population": {"type": "integer"},
},
"required": ["name", "population"],
})
# JSON (works with both Outlines and XGrammar)
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "Here is the information of the capital of France in the JSON format.\n",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 64,
"json_schema": json_schema,
},
},
)
print(response.json())
# Regular expression (Outlines backend only)
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "Paris is the capital of",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 64,
"regex": "(France|England)",
},
},
)
print(response.json())
# EBNF (XGrammar backend only)
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "Write a greeting.",
"sampling_params": {
"temperature": 0,
"max_new_tokens": 64,
"ebnf": 'root ::= "Hello" | "Hi" | "Hey"',
},
},
)
print(response.json())
```
Detailed example in [structured outputs](./structured_outputs.ipynb).
### Custom logit processor
Launch a server with `--enable-custom-logit-processor` flag on.
```bash
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --enable-custom-logit-processor
```
Define a custom logit processor that will always sample a specific token id.
```python
from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor
class DeterministicLogitProcessor(CustomLogitProcessor):
"""A dummy logit processor that changes the logits to always
sample the given token id.
"""
def __call__(self, logits, custom_param_list):
# Check that the number of logits matches the number of custom parameters
assert logits.shape[0] == len(custom_param_list)
key = "token_id"
for i, param_dict in enumerate(custom_param_list):
# Mask all other tokens
logits[i, :] = -float("inf")
# Assign highest probability to the specified token
logits[i, param_dict[key]] = 0.0
return logits
```
Send a request:
```python
import requests
response = requests.post(
"http://localhost:30000/generate",
json={
"text": "The capital of France is",
"custom_logit_processor": DeterministicLogitProcessor().to_str(),
"sampling_params": {
"temperature": 0.0,
"max_new_tokens": 32,
"custom_params": {"token_id": 5},
},
},
)
print(response.json())
```