sglang.0.4.8.post1/sglang/sgl-kernel/tests/test_qserve_w4a8_per_chn_ge...

119 lines
4.1 KiB
Python

import pytest
import torch
from sgl_kernel import qserve_w4a8_per_chn_gemm
# Adapted from https://github.com/mit-han-lab/omniserve/blob/main/omniserve/modeling/layers/quantized_linear/w4a8_linear.py
def convert_to_qserve_format(qweight, scale, zero):
assert qweight.min() >= 0 and qweight.max() <= 15, "Quantized weight out of range"
in_features = qweight.shape[1]
out_features = qweight.shape[0]
assert in_features % 32 == 0, "Input features must be divisible by 32"
assert out_features % 32 == 0, "Output features must be divisible by 32"
# ---- Repack the weight ---- #
# pack to M // 32, K // 32, (8, 4), ([2], 2, 2, 4)
qweight_unpack_reorder = (
qweight.reshape(
out_features // 32,
2,
2,
8,
in_features // 32,
2,
4,
4,
)
.permute(0, 4, 3, 6, 1, 5, 2, 7)
.contiguous()
)
qweight_unpack_reorder = (
qweight_unpack_reorder.permute(0, 1, 2, 3, 5, 6, 7, 4)
.contiguous()
.to(torch.int8)
)
# B_fp16_reorder = B_fp16_reorder[:, :, :, :, :, :, [3, 2, 1, 0]].contiguous()
# [16, 0, 17, 1, ...]
qweight_unpack_repacked = (
qweight_unpack_reorder[..., 1] << 4
) + qweight_unpack_reorder[..., 0]
qweight_unpack_repacked = qweight_unpack_repacked.reshape(
out_features // 32, in_features // 32, 32, 16
)
qweight_unpack_repacked = qweight_unpack_repacked.reshape(
out_features, in_features // 2
).contiguous()
# ---- Pack the scales ---- #
scale = scale.reshape(out_features).to(torch.float16).contiguous()
szero = zero.reshape(out_features).to(torch.float16).contiguous() * scale
return qweight_unpack_repacked, scale, szero
# INT4 Quantization
def asym_quantize_tensor(tensor):
tensor_min = tensor.min(dim=-1, keepdim=True)[0]
tensor_max = tensor.max(dim=-1, keepdim=True)[0]
q_min = 0
q_max = 15
tensor_scale = (tensor_max - tensor_min) / (q_max - q_min)
tensor_zero = q_min - torch.round(tensor_min / tensor_scale)
tensor_q = torch.clamp(
torch.round(tensor / tensor_scale) + tensor_zero, q_min, q_max
).to(torch.int8)
return tensor_q, tensor_scale.to(torch.float16), tensor_zero.to(torch.int8)
# INT8 Quantization
def sym_quantize_tensor(tensor):
tensor_scale = tensor.abs().max(dim=-1, keepdim=True)[0] / 127
tensor_q = torch.clamp(torch.round(tensor / tensor_scale), -128, 127).to(torch.int8)
return tensor_q, tensor_scale.to(torch.float16)
def torch_w4a8_per_chn_gemm(a, b, a_scale, b_scale, b_zero, out_dtype):
print(a.shape)
print(b.shape)
print(b_zero.shape)
o = torch.matmul(
a.to(torch.float16), (b.to(torch.float16) - b_zero.to(torch.float16)).t()
)
o = o * a_scale.view(-1, 1) * b_scale.view(1, -1)
return o.to(out_dtype)
def _test_accuracy_once(M, N, K, out_dtype, device):
# to avoid overflow, multiply 0.01
a = torch.randn((M, K), device=device, dtype=torch.float32) * 0.01
b = torch.randn((N, K), device=device, dtype=torch.float32) * 0.01
# symmetric quantize a
a_q, a_scale = sym_quantize_tensor(a)
# asymmetric quantize b
b_q, b_scale, b_zero = asym_quantize_tensor(b)
# convert to qserve format
b_q_format, b_scale_format, b_szero_format = convert_to_qserve_format(
b_q, b_scale, b_zero
)
# cal sum of every row of a
a_sum = a.sum(dim=-1, keepdim=True).to(torch.float16)
out = qserve_w4a8_per_chn_gemm(
a_q, b_q_format, b_scale_format, a_scale, b_szero_format, a_sum
)
ref_out = torch_w4a8_per_chn_gemm(a_q, b_q, a_scale, b_scale, b_zero, out_dtype)
torch.testing.assert_close(out, ref_out, rtol=1e-3, atol=1e-2)
@pytest.mark.parametrize("M", [1, 16, 32, 64, 128, 512, 1024, 4096, 8192])
@pytest.mark.parametrize("N", [128, 512, 1024, 4096, 8192, 16384])
@pytest.mark.parametrize("K", [512, 1024, 4096, 8192, 16384])
@pytest.mark.parametrize("out_dtype", [torch.float16])
def test_accuracy(M, N, K, out_dtype):
_test_accuracy_once(M, N, K, out_dtype, "cuda")
if __name__ == "__main__":
pytest.main([__file__])